Chứng minh rằng: Luôn tạo được một hình bình hành bằng việc nối 4 trung điểm của 4 cạnh trong một tứ giác bất kì (cả tứ giác lồi và lõm).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Leftrightarrow\left(x-6\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy..............
b, \(\Leftrightarrow\left(x+\frac{2x}{x-2}\right)^2-2x.\frac{2x}{x-2}=12\)
\(\Leftrightarrow\left(\frac{x^2}{x-2}\right)^2-\frac{4x^2}{x-2}=12\)
\(\Leftrightarrow\left(\frac{x^2}{x-2}-6\right)\left(\frac{x^2}{x-2}+2\right)=0\)
Đến đây đơn giản rồi nhé
ĐK: \(\hept{\begin{cases}x\ge0\\x\ne1;y\ne2\end{cases}}\)
pt <=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}-1}+\frac{6}{\left|y-2\right|}=2\\\frac{2-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{3}{3\left|y-2\right|}=-9\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{\sqrt{x}-1}+\frac{6}{\left|y-2\right|}=2\\\frac{2}{\sqrt{x}-1}-\frac{1}{\left|y-2\right|}=-8\end{cases}}\)
Đặt: \(\frac{1}{\sqrt{x}-1}=u;\frac{1}{\left|y-2\right|}=v>0\)ta có pt:
\(\hept{\begin{cases}u+6v=2\\2u-v=-8\end{cases}}\)=> tìm u; v sau đó tìm x; y
Đặt \(\left|y-2\right|=u;\sqrt{x}-1=v\)
Hệ trở thành \(\hept{\begin{cases}\frac{1}{v}+\frac{6}{u}=2\\\frac{2}{v}-u=-8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2}{v}+\frac{12}{u}=4\\\frac{2}{v}-u=-8\end{cases}}\)
\(\Rightarrow\frac{12}{u}+u=12\Rightarrow\frac{12+u^2}{u}=12\)
\(\Rightarrow u^2-12u+12=0\)
\(\Delta=12^2-4.12=96,\sqrt{\Delta}=4\sqrt{6}\)
\(\Rightarrow\orbr{\begin{cases}u=\frac{12+4\sqrt{6}}{2}=6+2\sqrt{6}\\u=\frac{12-4\sqrt{6}}{2}=6-2\sqrt{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|y-2\right|=6+2\sqrt{6}\\\left|y-2\right|=6-2\sqrt{6}\end{cases}}\)
\(\Rightarrow y\in\left\{8\pm2\sqrt{6};-4\pm2\sqrt{6}\right\}\)
Thay vào hệ tính được x nha, th nào ko đúng loại
\(ĐK:x\ge-1\)
\(PT\Leftrightarrow2x^2-5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=-4\)
Đặt \(\sqrt{x+1}=a,\sqrt{x^2-x+1}=b\left(a,b\ge0\right)\)
\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)\
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}\)
Đến đây đơn giản rồi nhé
Tự đặt ĐKXĐ ban đầu của đề nha bạn!!!
Đặt a = \(\sqrt{x+1}\) (a \(\ge\)0) ; b = \(\sqrt{x^2-x+1}\)(b \(\ge\)0)
Khi đó ta có pt: 2(a2 + b2) - 5ab = 0
<=> (2a - b)(a - 2b) = 0 <=> \(\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\) <=> \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Từ đó chia 2 TH giải ra x nha bạn
\(\hept{\begin{cases}x+y-2xy=0\\x+y-x^2y^2=\sqrt{\left(xy-1\right)^2+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2xy\\2xy-x^2y^2=\sqrt{x^2y^2-2xy+2}\left(1\right)\end{cases}}\)
đặt 2xy-x^2y^2=t
=> (1) \(\Leftrightarrow t=\sqrt{2-t}\)
Tự làm nốt nhé
\(\Leftrightarrow\hept{\begin{cases}x+y-2xy=0\\x+y-x^2y^2=\sqrt{x^2y^2-2xy+2}\end{cases}}\)
Đặt x+y=a, xy=b
\(\Rightarrow\hept{\begin{cases}a-2b=0\\a-b^2=\sqrt{b^2-2b+2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\2b-b^2=\sqrt{b^2-2b+2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\b^4-4b^3+4b^2=b^2-2b+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\b^4-4b^3+3b^2+2b-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2b\\\left(b-1\right)^2\left(b^2-2b-2\right)=0\end{cases}}\)
Đến đây đơn giản rồi nhé :P
Gọi số học sinh dự thi trường X, Y lần lượt là a, b (học sinh) (ĐK: a, b thuộc N*)
Theo đề ta có hê pt: \(\hept{\begin{cases}a+b=350\\\frac{97a}{100}+\frac{96b}{100}=338\end{cases}}\) <=> \(\hept{\begin{cases}a+b=350\\97a+96b=33800\end{cases}}\)<=> \(\hept{\begin{cases}a=200\\b=150\end{cases}}\)(TM)
Vậy ....
mai làm
Chú thích: tđ = trung điểm
tg = tam giác
tt = trung tuyến
Hướng dẫn làm:
Gọi tứ giác ABCD bất kì.
Gọi E là trung điểm AB, F là trung điểm BC, G là trung điểm CD, H là trung điểm DA
Xét tam giác ABC, ta có E tđ AB, F là tđ BC
=> EF là đường trung tuyến tg ABC
=> EF song song AC (1)
Xét tam giác ADC, ta có H tđ AD, G là tđ CD
=> HG là đường trung tuyến tg ADC
=> HG song song AC (2)
(1)(2) => EF song song HG
Xét tam giác ABD, ta có E tđ AB, H là tđ AD
=> EH là đường trung tuyến tg ABD
=> EH song song BD (3)
Xét tam giác DBC, ta có G tđ CD, F là tđ BC
=> GF là đường trung tuyến tg DBC
=>GF song song BD (4)
(3)(4) => EH song song GF
Xét tứ giác EFGH ta có
EF song song HG
EH song song GF
=> tứ giác EFGH là hình bình hành (đpcm)