Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)
\(=\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\right)\cdot\dfrac{2022}{2021}\)
\(=\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\right)\cdot\dfrac{2022}{2021}\)
\(=\left(\dfrac{2}{7}-\dfrac{2}{7}\right)\cdot\dfrac{2022}{2021}\)
=0
b: Đặt \(N=4^{2021}+4^{2020}+...+4^2+4+1\)
=>M=75N+25
\(4N=4^{2022}+4^{2021}+...+4^3+4^2+4\)
=>\(4N-N=4^{2022}+4^{2021}+...+4^3+4^2+4-4^{2021}-4^{2020}-...-4^2-4-1\)
=>\(3N=4^{2022}-1\)
\(M=75N+25=25\left(3N+1\right)\)
\(=25\left(4^{2022}-1+1\right)\)
\(=25\cdot4^{2022}=100\cdot4^{2021}⋮10\)
c: 18x=24y=36z
=>\(\dfrac{18x}{72}=\dfrac{24y}{72}=\dfrac{36z}{72}\)
=>\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}\)
=>bộ số nguyên dương (x;y;z) nhỏ nhất thỏa mãn là (4;3;2)
Bài 3:
a: TH1: P=5
P+6=11; P+12=5+12=17; P+18=5+18=23; P+24=24+5=29
=>NHận
TH2: P=5k+1
P+24=5k+24+1=5k+25=5(k+5) chia hết cho 5
=>Loại
TH3: P=5k+2
P+18=5k+2+18=5k+20=5(k+4) chia hết cho 5
=>Loại
TH3: P=5k+3
P+12=5k+3+12=5k+15=5(k+3) chia hết cho 5
=>Loại
TH4: P=5k+4
P+6=5k+4+6=5k+10=5(k+2) chia hết cho 5
=>Loại
Vậy: P=5
Lời giải:
a. Diện tích cần quét sơn là:
$2\times 1,5+2\times 1\times (2+1,5)=10$ (m2)
Lượng xi măng cần dùng để quét:
$10:1\times 2=20$ (kg)
b.
Bể chứa lượng nước là:
$2\times 1,5\times 1\times 1000\times 0,8=2400$ (lít)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mn hiểu đề của bạn hơn nhé.
3-(3/4+x-1):2/3=1
=>(3/4+x-1):2/3=2
=>3/4+x-1=3
=>3/4+x=4
=>x=13/4
Lời giải:
Đặt $\frac{n(n+1)(n+2)}{6}+1=p$ với $p$ là snt
$\Leftrightarrow n(n+1)(n+2)+6=6p$
$\Leftrightarrow (n+3)(n^2+2)=6p$
Do $n+3\geq 3; n^2+2\geq 2$ với mọi $n$ tự nhiên nên ta có các TH sau:
TH1: $n+3=3, n^2+2=2p\Rightarrow n=0; p=1$ (loại)
TH2: $n+3=6, n^2+2=p\Rightarrow n=3; p=11$ (tm)
TH3: $n+3=p, n^2+2=6\Rightarrow n=2; p=5$ (tm)
TH4: $n+3=2p; n^2+2=3\Rightarrow n=1; p=2$ (tm)
TH5: $n+3=3p; n^2+2=2\Rightarrow n=0; p=1$ (loại)
\(11x+42-2x=100-9x-22\\ 11x-2x+9x=100-22-42\\ 18x=36\\ x=\dfrac{36}{18}=2\)
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2x+y=3\cdot\left(-1\right)+1=-2\\3x+2y=2\cdot\left(-1\right)-3=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=-4\\3x+2y=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y-3x-2y=-4+5\\2x+y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2-2x=-2-2=-4\end{matrix}\right.\)
b: Vì \(\dfrac{2}{3}\ne\dfrac{1}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=6m+2\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y=3m+1\\4x+2y-3x-2y=6m+2-2m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4m+5\\y=3m+1-2\left(4m+5\right)=3m+1-8m-10=-5m-9\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m+5< 1\\-5m-9< 6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m< -4\\-5m< 15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m>-3\end{matrix}\right.\)
=>-3<m<-1
Chúng ta sẽ chia ra 2 loại:
Loại 1: ba đỉnh ko có điểm A, loại 2: ba đỉnh có điểm A
Loại 1: ba đỉnh không có điểm A
TH1: 2 điểm nằm trên tia Ax, 1 điểm nằm trên tia Ay
Số cách lấy 2 điểm nằm trên tia Ax(không phải điểm A) là:
\(C^2_6\left(cách\right)\)
Số cách lấy 1 điểm nằm trên tia Ay(không phải điểm A) là 5 cách
Do đó: Có \(C^2_6\cdot5\left(cách\right)\)
TH2: 2 điểm nằm trên tia Ay, 1 điểm nằm trên tia Ax
Số cách lấy 1 điểm nằm trên tia Ax(không phải điểm A) là: 6(cách)
Số cách lấy 2 điểm nằm trên tia Ay(không phải điểm A) là:
\(C^2_5\left(cách\right)\)
=>Có \(6\cdot C^2_5\left(cách\right)\)
Tổng số cách là \(5\cdot C^2_6+6\cdot C^2_5=135\left(cách\right)\)
Loại 2: ba đỉnh có điểm A
Số cách lấy 1 điểm nằm trên tia Ax là 6(cách)
Số cách lấy 1 điểm nằm trên tia Ay là 5(cách)
Do đó: Có \(6\cdot5=30\left(cách\right)\)
Tổng số cách của cả 2 loại là 135+30=165(cách)
mình cảm ơn bạn