phân tích thành nhân tử
(x+4)^2+4x-4y-12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x2 - 4 - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 ) - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 - x - 5 ) = 0
<=> ( 3x - 2 )( 2x - 3 ) = 0
<=> \(\orbr{\begin{cases}3x-2=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
x3 + 64 + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 ) + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 + 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 2x + 13 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x^2-2x+13=0\end{cases}}\Leftrightarrow x=-4\)( vì x2 - 2x + 13 = ( x2 - 2x + 1 ) + 12 = ( x - 1 )2 + 12 ≥ 12 > 0 ∀ x )
( x - 3 )( x2 + 4x + 9 ) + 2( x2 - 9 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 ) + 2( x - 3 )( x + 3 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 + 2x + 6 - 10 ) = 0
<=> ( x - 3 )( x2 + 6x + 5 ) = 0
<=> ( x - 3 )( x + 1 )( x + 5 ) = 0
<=> x = 3 hoặc x = -1 hoặc x = -5
<=> ( x - 3 )(
a) \(9\left(2x-3\right)^2-4\left(x+1\right)^2\)
\(=\left[3\left(2x-3\right)-2\left(x+1\right)\right]\left[3\left(2x-3\right)+2\left(x+1\right)\right]\)
\(=\left(6x-9-2x-2\right)\left(6x-9+2x+2\right)\)
\(=\left(4x-11\right)\left(8x-7\right)\)
b) \(\left(x^2+4y^2-20\right)-16\left(xy-4\right)^2\)
\(=\left[\left(x^2-4xy+4y^2\right)-4\right]\left[\left(x^2+4xy+4y^2\right)-36\right]\)
\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
a. 9 ( 2x - 3 )2 - 4 ( x + 1 )2
= [ 3 ( 2x - 3 ) ]2 - [ 2 ( x + 1 ) ]2
= [ 3 ( 2x - 3 ) - 2 ( x + 1 ) ] [ 3 ( 2x - 3 ) + 2 ( x + 1 ) ]
= ( 6x - 9 - 2x - 2 ) ( 6x - 9 + 2x + 2 )
= ( 4x - 11 ) ( 8x - 7 )
b. ( x2 + 4y2 - 20 )2 - 16 ( xy - 4 )2
= ( x2 + 4y2 - 20 )2 - [ 4 ( xy - 4 ) ]2
= [ x2 + 4y2 - 20 - 4 ( xy - 4 ) ] [ x2 + 4y2 - 20 + 4 ( xy - 4 ) ]
= ( x2 + 4y2 - 20 - 4xy + 16 ) ( x2 + 4y2 - 20 + 4xy - 16 )
= ( x2 + 4y2 - 4xy - 4 ) ( x2 + 4y2 + 4xy - 36 )
= [ ( x - 2y )2 - 22 ] [ ( x + 2y )2 - 62 ]
= ( x - 2y - 2 ) ( x - 2y + 2 ) ( x + 2y - 6 ) ( x + 2y + 6 )
21, \(x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
22, \(15x^2y+20xy^2-25xy=5xy\left(3x+4y-5\right)\)
23, \(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
24, \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Tương tự :))
21.\(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
22,\(15x^2y+20xy^2-25xy\)
\(=5xy\left(3x+4y-5\right)\)
23,\(4x^2+8xy-3x-6y\)
\(=4x\left(x+2y\right)-3\left(x+2y\right)\)
\(=\left(4x-3\right)\left(x+2y\right)\)
24\(x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
25,\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
26.\(xy-2x-y^2+2y\)
\(=x\left(x-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(x-2\right)\)
27,\(x^2+x-xy-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
28,\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
29.\(x^2-2xy+y^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
a) ( x + 1/2 )2 - ( x + 1/2 )( x + 6 ) = 8
<=> ( x + 1/2 )[ ( x + 1/2 ) - ( x + 6 ) ] = 8
<=> ( x + 1/2 )( x + 1/2 - x - 6 ) = 8
<=> ( x + 1/2 ).(-11/2) = 8
<=> x + 1/2 = -16/11
<=> x = -43/22
b) ( x2 + 2x )2 - 2x2 - 4x = 3
<=> ( x2 + 2x )2 - 2( x2 + 2x ) - 3 = 0 (*)
Đặt t = x2 + 2x
(*) <=> t2 - 2t - 3 = 0
<=> t2 + t - 3t - 3 = 0
<=> t( t + 1 ) - 3( t + 1 ) = 0
<=> ( t + 1 )( t - 3 ) = 0
<=> ( x2 + 2x + 1 )( x2 + 2x - 3 ) = 0
<=> ( x + 1 )2( x2 - x + 3x - 3 ) = 0
<=> ( x + 1 )2[ x( x - 1 ) + 3( x - 1 ) ] = 0
<=> ( x + 1 )2( x - 1 )( x + 3 ) = 0
<=> x = -1 hoặc x = 1 hoặc x = -3
a, \(\left(5x-2y\right)\left(5x+2y\right)+4y-1=25x^2-4y^2+4y-1\)
\(=\left(5x\right)^2-\left(4y^2-4y+1\right)=\left(5x\right)^2-\left(2y-1\right)^2=\left(5x-2y+1\right)\left(5x+2y-1\right)\)
b, t đag loading :)) phải vận dụng kiến thức đầu có nhóm zô, tí giải choa nhá :)
\(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)^2\left(x+3\right)\)
x3 - 3x2 - 9x + 27
= ( x3 - 3x2 ) - ( 9x - 27 )
= x2( x - 3 ) - 9( x - 3 )
= ( x - 3 )( x2 - 9 )
= ( x - 3 )( x - 3 )( x + 3 )
= ( x - 3 )2( x + 3 )
( x - y )2 + 4x - 4y - 12 < xin phép sửa đề >
= ( x - y )2 + 4( x - y ) - 12
Đặt t = x - y
bthuc <=> t2 + 4t - 12
= t2 - 2t + 6t - 12
= t( t - 2 ) + 6( t - 2 )
= ( t - 2 )( t + 6 )
= ( x - y - 2 )( x - y + 6 )