giải hệ phương trình \(\hept{\begin{cases}y^2-y\left(\sqrt{x-1}+1\right)+\sqrt{x-1}=0\\x^2+y-\sqrt{7x^2-3}=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à nó bị liền : \(M=\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2\le0\)
\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc\le0\)
\(\Leftrightarrow-\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\right]\le0\)
\(\Leftrightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\le0\)( Luôn đúng )
\(\Rightarrowđpcm\)
Các bước làm:
Thử nghiệm: x = 2 là nghiệm
------> Thử xem các cách làm tất nhiên là không thể bình phương -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ
+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3
-----------------------------------------------------------------------------------------------------------------------
Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!
\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)
<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)
<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)
<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi \(1\le x\le3\))
<=> x - 2 = 0
<=> x = 2 thỏa mãn đk
Gọi dân số nội thành là a, dân số ngoại thành là b.
Ta có: dân số của một tinh hay tổng của a và b là 420000 => a+b=420000
Dân số nội thành tăng 0,8% => a x 100,8% = a x 1,008
Dân số ngoại thành tăng 1,1% => b x 101,1% = b x 1,011
Vậy a x 1,008 + b x 1,011 = 420000 x 101% = 424200
Vậy ta có phương trình \(\hept{\begin{cases}a+b=420,000\\ax1,008+bx1,011=424,200\end{cases}}\)
Giải phương trình: a + b = 420,000 => (a+b)x1,008+bx0,003=424200
=> 423,360 + bx0,003 = 424,200 => bx0,003 = 840 => b = 280,000 => a = 140,000
Vậy dân số nội thành là 140 nghìn người, dân số ngoại thành là 280 nghìn người.
Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)
Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)
Đến đây bạn tự giải tiếp
ĐK: \(x\ge1\)
Từ pt (1) <=> \(\left(y^2-y\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)
<=> \(y\left(y-\sqrt{x-1}\right)-\left(y-\sqrt{x-1}\right)=0\)
<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\)
<=> \(\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)
+) Với y - 1 =0 <=> y = 1 thay vào pt thứ 2 ta có:
\(x^2+1=\sqrt{7x^2-3}\)
<=> \(x^4-5x^2+4=0\)
<=> \(\orbr{\begin{cases}x^2=4\\x^2=1\end{cases}}\)<=> x = 2 (tm đk) ; x = -2 ( loại ); x = 1 ( tmđk ) ; x = -1 (loại)
=> Trường hợp này có 2 nghiệm: ( x ; y ) là ( 2; 1 ) và ( 1; 1 )
+) Với \(y-\sqrt{x-1}=0\)<=> \(y=\sqrt{x-1}\) thay vào pt (2) ta có:
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\)
<=> \(\left(x^2-4\right)+\left(\sqrt{x-1}-1\right)-\left(\sqrt{7x^2-3}-5\right)=0\)
<=> \(\left(x-2\right)\left(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}\right)=0\)
<=> \(\orbr{\begin{cases}x-2=0\\x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=0\left(loai\right)\end{cases}}\)
( vì \(x+2+\frac{1}{\sqrt{x-1}+1}-\frac{7\left(x+2\right)}{\sqrt{7x^2-3}+5}=\left(x+2\right)\left(1-\frac{7}{\sqrt{7x^2-3}+5}\right)+\frac{1}{\sqrt{x-1}+1}>0\)
với mọi x > = 1 )
<=> x = 2 (tm)
Thay vào pt dưới ta có: y = 1
=> trường hợp này có nghiệm ( 2; 1)
Kết luận:...