Cho biểu thức: P=\(\frac{x^2-2x+2016}{x^2}\) với \(x\ge1\) . Tìm giá trị nhỏ nhất và giá trị lớn nhất của P.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)=\left(2-1\right)\left(2+1\right)...\left(2^{256}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)=\left(2^4-1\right)...\left(2^{256}+1\right)=....=2^{512}-1\)
A= (2-1) (2+1) (22+1) ........ + 1
= (22-1)(22+1) ......... (2256+1)
= (24-1) (24+ 1) ......... (2256+1)
................
= [(2256)2 –1] + 1
= 2512

2n^2+2n-1 =n(2n+1) + n-1 chia hết chi 2n+1 nếu và chỉ nếu n-1 chia hết cho 2n+1
suy ra n=1

Ta có : n2 + n + 1
= n2 + 2n - n - 2 + 3
= n ( n + 2 ) - ( n + 2 ) + 3
= ( n - 1 ) ( n + 2 ) + 3
Vì ( n - 1 ) ( n + 2 )\(⋮\)n + 2 nên 3\(⋮\)n + 2
=> n + 2\(\in\){ \(\pm\)1 ; \(\pm\)3 }
=> n\(\in\){ - 5 ; - 3 ; - 1 ; 1 } ( tm n\(\in\)Z )

Ta có a + b \(⋮\)3
=> (a + b)3 \(⋮\)33
=> (a + b)3 \(⋮\)32
=> a3 + b3 + 3ab(a + b) \(⋮\)9 (1)
Vì a + b \(⋮\)3
=> 3ab(a + b) \(⋮\)9 (2)
Từ (1)(2) => a3 + b3 + 3ab(a + b) - 3ab(a + b) \(⋮\)9
=> a3 + b3 \(⋮\)9 (đpcm)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Mà \(a+b⋮3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮3\Rightarrow⋮9\)
=> đpcm

Đặt n2 + 3 = k2 ( k ∈ N )
=> k2 - n2 - 3 = 0
=> k2 - n2 = 3
=> ( k - n )( k + n ) = 3
Xét các trường hợp :
1. \(\hept{\begin{cases}k-n=1\\k+n=3\end{cases}}\Rightarrow\hept{\begin{cases}k=1\\n=1\end{cases}\left(tm\right)}\)
2. \(\hept{\begin{cases}k-n=-1\\k+n=-3\end{cases}}\Rightarrow\hept{\begin{cases}k=-2\\n=-1\end{cases}\left(ktm\right)}\)
3. \(\hept{\begin{cases}k-n=3\\k+n=1\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=-1\end{cases}\left(tm\right)}\)
4. \(\hept{\begin{cases}k-n=-3\\k+n=-1\end{cases}}\Rightarrow\hept{\begin{cases}k=-2\\n=1\end{cases}\left(ktm\right)}\)
Vậy với n ∈ { -1 ; 1 } thì n2 + 3 là một số chính phương

a) x2y3 - 1/2x4y8 = x2y3( 1 - 1/2x2y5 )
b) a2b4 + a3b - abc = ab( ab3 + a2 - c )
c) 7x( y - 4 )2 - ( y - 4 )3 = ( y - 4 )2( 7x - y + 4 )
d) -x2y2z - 6x3y - 8x4z2 - x2y2z2 = -x2( y2z + 6xy + 8x2z2 + y2z2 )
e) x3 - 4x2 + x = x( x2 - 4x + 1 )


a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)
Mà B = 20062
=> 20062 - 1 < 20062
=> A < B
b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)
B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1
Mà C = 232
=> B < C
c) Tương tự như câu b
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé