viết phép nhân có tích gấp 32 lần thừa số thứ hai và thừa số thứ nhất gấp 8 lần thừa số thứ hai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{-8}{11}+\dfrac{3}{-11}=-1\)
b: \(\dfrac{-30}{44}+\dfrac{-3}{22}< \dfrac{-8}{11}\)
c: \(\dfrac{5}{7}>\dfrac{4}{7}+\dfrac{-1}{7}\)
d: \(\dfrac{2}{3}+\dfrac{-3}{4}< \dfrac{4}{5}+\dfrac{-5}{6}\)
a: sửa đề: \(16\dfrac{3}{5}\cdot\dfrac{7}{9}-13\dfrac{3}{5}\cdot\dfrac{7}{9}\)
\(=\dfrac{7}{9}\left(16+\dfrac{3}{5}-13-\dfrac{3}{5}\right)\)
\(=\dfrac{7}{9}\cdot3=\dfrac{7}{3}\)
b: \(\dfrac{-3}{5}+\left(\dfrac{-2}{5}+2\right)\)
\(=\dfrac{-3}{5}+\dfrac{-2}{5}+2\)
=-1+2
=1
c: \(8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
\(=8+\dfrac{2}{7}-3-\dfrac{4}{9}-4-\dfrac{2}{7}\)
\(=1-\dfrac{4}{9}=\dfrac{5}{9}\)
\(x-\dfrac{3}{4}=\dfrac{4}{5}\)
=>\(x=\dfrac{4}{5}+\dfrac{3}{4}=\dfrac{31}{20}\)
=>Chọn C
a: Xét ΔABF và ΔAEC có
AB=AE
\(\widehat{BAF}=\widehat{EAC}\)(hai góc đối đỉnh)
AF=AC
Do đó: ΔABF=ΔAEC
=>BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}=\widehat{BAC}\)(hai góc đối đỉnh)
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//BC
b: Ta có: FM+MB=FB
=>FB=2MF+MF=3MF
mà CE=3CN
và FB=CE
nên MF=CN
Xét ΔAFM và ΔACN có
AF=AC
\(\widehat{AFM}=\widehat{ACN}\)(ΔAFB=ΔACE)
FM=CN
Do đó: ΔAFM=ΔACN
=>\(\widehat{FAM}=\widehat{CAN}\)
mà \(\widehat{FAM}+\widehat{MAC}=180^0\)(hai góc kề bù)
nên \(\widehat{CAN}+\widehat{CAM}=180^0\)
=>M,A,N thẳng hàng
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
b: ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Ta có: ΔMAB=ΔMCD
=>AB=CD
mà AB<AC
nên CD<CA
=>\(\widehat{CAD}< \widehat{CDA}\)
mà \(\widehat{CDA}=\widehat{BAM}\)
nên \(\widehat{CAM}< \widehat{BAM}\)
c: Xét ΔAHM vuông tại H và ΔDKM vuông tại K có
MA=MD
\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)
Do đó: ΔAHM=ΔDKM
=>AH=DK
d: Ta có: AM>AH(ΔAHM vuông tại H)
DM>DK(ΔDKM vuông tại K)
Do đó: AM+DM>AH+DK
=>AD>2DK
e:
Ta có: AG=2GM
mà AG+GM=AM
nên \(AG=\dfrac{2}{3}AM\)
Xét ΔBAC có
AM là đường trung tuyến
\(AG=\dfrac{2}{3}AM\)
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm của ΔABC
BG cắt AC tại N
CG cắt AB tại P
Do đó: N là trung điểm của AC, P là trung điểm của AB
Xét ΔABC có
G là trọng tâm của ΔABC
BN,CP là các đường trung tuyến
Do đó: \(BG=\dfrac{2}{3}BN;CG=\dfrac{2}{3}CP\)
Xét ΔGAB có GA+GB>AB
Xét ΔGAC có GA+GC>AC
Xét ΔGBC có GB+GC>BC
Do đó: \(2\left(GA+GB+GC\right)>AB+AC+BC\)
=>\(GA+GB+GC>\dfrac{AB+AC+BC}{2}\)
=>\(\dfrac{2}{3}\left(AM+BN+CP\right)>\dfrac{AB+AC+BC}{2}\)
=>\(AM+BN+CP>\dfrac{3}{4}\cdot\left(AB+AC+BC\right)\)
Vì tích gấp 32 lần thừa số thứ hai nên thừa số thứ nhất là 32
Thừa số thứ hai là: 32 : 8 = 4
Phép nhân đó là:
32 x 4 = 128
ĐS:....