Rút gọn :\(\dfrac{1+15^4+15^8+...+15^{96}+15^{100}}{1+15^2+15^4+15^6+...+15^{94}+15^{96}+15^{100}+15^{102}}\)
Giúp tớ giải bài này nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{n+1}{3n+4}\)
a; Điều kiện để A là phân số: 3n + 4 ≠ 0
n ≠ \(\dfrac{-4}{3}\)
Vậy để A là phân số thì n ≠ \(\dfrac{-4}{3}\)
b; Để A là số nguyên thì
n + 1 ⋮ 3n + 4
3.(n + 1) ⋮ 3n + 4
3n + 3 ⋮ 3n + 4
3n + 4 - 1 ⋮ 3n + 4
1 ⋮ 3n + 4
3n + 4 \(\in\) Ư(1) = {-1; 1}
Lập bảng ta có:
3n + 4 | -1 | 1 |
n | - \(\dfrac{5}{3}\) | - 1 |
Theo bảng trên ta có: n = -1
Kết luận: Để phân số \(\dfrac{n+1}{3n+4}\) là số nguyên thì n = -1
5 dm² = 500 cm²
400 cm² = 4 dm²
3100 cm² = 31 dm²
2 m² = 200 dm²
500000 cm² = 50 m²
3 m² = 30000 cm²
Bài 2. Tính giá trị của biểu thức:
a) P(3) = 3.3² - 5.3 - 1
= 27 - 16
= 11
P(-3) = 3.(-3)² - 5.(-3) - 1
= 27 + 15 - 1
= 41
b) |x| = 2
⇒ x = 2 hoặc x = -2
Q(2) = 4.2³ - 8.2 + 7
= 32 - 16 + 7
= 23
Q(-2) = 4.(-2)³ - 8.(-2) + 7
= -32 + 16 + 7
= -9
c) Không có giá trị của x nên không tính được
Đa thức một biến
Bài 1.
a) *) 3x⁵ có:
- Hệ số: 3
- Bậc: 5
*) 1/3 x⁷ có:
- Hệ số: 1/3
- Bậc: 7
*) 4x có:
- Hệ số: 4
- Bậc: 1
*) -x³ có:
- Hệ số: -1
- Bậc: 3
b) *) -12x⁹ có:
- Hệ số: -12
- Bậc: 9
*) x³/7 có:
- Hệ số: 1/7
- Bậc: 3
*) -6x có:
- Hệ số: -6
- Bậc: 1
*) 4/19 x³ có:
- Hệ số: 4/19
- Bậc: 3
Đổi: 12 cm = 1,2 dm
Diện tích xung quanh của hộp đó là:
(2,5+1,8)x2x1,2=10,32 (dm2)
Diện tích mặt đáy của hộp đó là:
2,5x1,8=4,2 (dm2)
Diện tích giấy làm hộp là:
10,32+4,2=14,52 (dm2)
Đáp số: 14,52 dm2
Diện tích xung quanh của hình lập phương đó là:
(15x15)x4=900 (cm2)
Diện tích toàn phần của hình lập phương đó là:
(15x15)x6=1350 (cm2)
Thể tích của hình lập phương đó là:
15x15x15=3375 (cm3)
Đáp số: Diện tích xung quanh: 900 cm2
Diện tích toàn phần: 1350 cm2
Thể tích: 3375 cm3
Đặt \(A=1+15^4+15^8+...+15^{96}+15^{100}\)
\(\Rightarrow15^4.A=15^4+15^8+...+15^{100}+15^{104}\)
\(\Rightarrow15^4.A-A=15^{104}-1\)
\(\Rightarrow A=\dfrac{15^{104}-1}{15^4-1}\)
\(B=1+15^2+...+15^{100}+15^{102}\)
\(\Rightarrow15^2B=15^2+15^4+...+15^{102}+15^{104}\)
\(\Rightarrow15^2.B-B=15^{104}-1\)
\(\Rightarrow B=\dfrac{15^{104}-1}{15^2-1}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{15^{104}-1}{15^4-1}.\dfrac{15^2-1}{15^{104}-1}=\dfrac{15^2-1}{15^4-1}=\dfrac{15^2-1}{\left(15^2-1\right)\left(15^2+1\right)}\)
\(=\dfrac{1}{15^2+1}=\dfrac{1}{226}\)