tính giá trị của biểu thức A=(x−y)3+3(x−y)(xy+1)A=(x−y)3+3(x−y)(xy+1) biết rằng x=3√2+√3−3√2−√3x=2+33−2−33, y=3√√5+2−3√√5−2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Đths y = ax - 4 cắt y = 2x - 1 tại điểm có hoành độ = 2
=> Thay x = 2 vào y = 2x - 1
=> y = 1
=> (1; 1) ∈ y = ax - 4
=> Thay x = 1; y = 1 vào hàm số y = ax - 4
=> a - 4 = 1 => a = 5
b) y = (2m - 3)x + (2m - 1) cắt trục tung tại điểm có tung độ = 46
=> y = (2m - 3)x + (2m - 1) cắt (0 ; 46)
=> Thay x = 0; y = 46 vào hàm số y = (2m - 3)x + (2m - 1)
=> 2m - 1 = 46
=> m = 47/2


Tham khảo link này nha
https://hoidap247.com/cau-hoi/17416
Đặt giá tiền niêm yết của máy sấy tóc và bàn ủi lần lượt là x,y
Theo bài : 1 máy sấy tóc,1 bàn ủi giá niêm yết hết 350 000 đồng \(\Rightarrow x+y=350.000\)(1)
Khi gặp đợt khuyến mãi ,máy sấy tóc giảm 10%,bản ủi giảm 20% thì còn 300 000 đồng \(\Rightarrow0,9x+0,8y=300.000\)(2)
Từ (1),(2) ta được :\(\hept{\begin{cases}x=200.000\\y=150.000\end{cases}}\)
Vậy giá tiền của bàn ủi,máy sấy tóc lần lượt là 150 000 đồng,200 000 đồng.

Hình nếu chị không vẽ được thì hỏi em nhé chị !
Gọi I là trung điểm của BC => I cố định ( vì B,C cố định )
Ta có : AG = 2.OI ( theo bổ đề 7 )
Lại có AM = AH nên AM = 2.OI ( 1 )
Trên tia IO lấy điểm K sao cho OK = 2. OI ( 2 )
=> K cố định ( vì O,I cố định )
Từ ( 1 ) ( 2 ) => AM = KO mà AM// KO
( vì cùng vuông góc với BC ) .
Do đó AMKO là hình bình hành nên KM = OA = R : không đổi
Vậy khi A thay đổi trên cung lớn BC thì điểm M đi động trên đường tròn cố định ( K ; R ) => đpcm

hệ phương trình nhận x=1 , y=\(1+\sqrt{3}\)là nghiệm
\(\Leftrightarrow\hept{\begin{cases}a+\left(1+\sqrt{3}\right)b=\sqrt{3}\\1+\left(1+\sqrt{3}\right)a=\sqrt{3}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{\sqrt{3}-\left(\frac{\sqrt{3}-1}{2}\right)^2}{1+\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{(\sqrt{3}-1)^2}{2}\\b=\frac{2.\sqrt{3}-2}{1+\sqrt{3}}\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{\left(\sqrt{3}-1\right)^2}{2}\\b=\frac{2\left(\sqrt{3}-1\right)^2}{2}\end{cases}}}\)

gọi x là số ngày hoàn thành công ziệc của A ( x>0)
gọi y là số ngày hoàn thành công ziệc của B(y>0)
Một ngày A làm được \(\frac{1}{x}\)công ziệc
Một ngày B làm đc \(\frac{1}{y}\)công ziệc
Ta có phương trình \(6\left(\frac{1}{x}+\frac{1}{y}\right)=1\)
\(=>\frac{6}{x}+\frac{6}{y}=1\left(1\right)\)
ta có \(x-y=9\left(2\right)\)
ta có \(\hept{\begin{cases}\frac{6}{x}+\frac{6}{y}=1\\x-y=9\end{cases}\Leftrightarrow\hept{\begin{cases}6x+6y=xy\\x-y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}6y+6\left(y+9\right)=\left(y+9\right)y\\x=9+y\end{cases}}}\)
\(=>\hept{\begin{cases}6y+6y+54=y^2+9y\\x=9+y\end{cases}}\)
\(=>\hept{\begin{cases}y^2-3y-54=0\\x=9+y\end{cases}\Leftrightarrow\hept{\begin{cases}y=9\\x=18\end{cases}}}\)
A làm một mình 3 ngày thì làm được \(3.\frac{1}{18}=\frac{1}{6}\)công ziệc
B phài làm nốt là \(\left(1-\frac{1}{6}\right):\frac{1}{9}=7.5\left(ngày\right)\)

để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
đây là đề thi học sinh giỏi Bình định năm 2014-2015 ( mình đc cô giáo cho làm r nên bạn cứ yên tâm là đúng nhá . làm tỷ đề mà zẫn nhớ )
ta có \(x^3=\left(2+\sqrt{3}\right)-\left(2-\sqrt{3}\right)-3\sqrt[3]{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}.x\Rightarrow x^3+3x=2\sqrt{3}\left(1\right)\)
\(y^3=\left(\sqrt{5}+2\right)-\left(\sqrt{5}-2\right)-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}.y\Rightarrow y^3+3y=4\left(2\right)\)
Trừ theo zế của (1) cho (2) ta được
\(\left(x^3-y^3\right)+3\left(x-y\right)=2\sqrt{3}-4\)
do đó
\(A=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=x^3-y^3-3\left(x-y\right)xy+3\left(x-y\right)xy+3\left(x-y\right)\)
\(=x^3-y^3+3\left(x-y\right)=2\sqrt{3}-4\)