Cho ΔAMN vuông tại M (MA<MN). Kẻ tia phân giác của góc cắt MN tại B. Qua B kẻ BC vuông góc với AN tại C (C ϵ AN)
a) Cm:ΔABM = ΔACB
b) Gọi G là giao điểm của AM và CB. Cm: AB là đường trung trực của GN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do BI là tia phân giác của ∠ABC (gt)
⇒ ∠ABI = ∠CBI
⇒ ∠ABI = ∠DBI
Xét hai tam giác vuông: ∆ABI và ∆DBI có:
BI là cạnh chung
∠ABI = ∠DBI (cmt)
⇒ ∆ABI = ∆DBI (cạnh huyền - góc nhọn)
b) Do ∆ABI = ∆DBI (cmt)
⇒ AB = DB (hai cạnh tương ứng)
⇒ ∆ADB cân tại B
Do AB = DB (cmt)
⇒ B nằm trên đường trung trực của AD (1)
Do ∆ABI = ∆DBI (cmt)
⇒ IA = ID (hai cạnh tương ứng)
I nằm trên đường trung trực của AD (2)
Từ (1) và (2) ⇒ BI là đường trung trực của AD
c) ∆AIE vuông tại A
⇒ IE là cạnh huyền nên là cạnh lớn nhất
⇒ IA < IE
Mà IA = ID (cmt)
⇒ ID < IE
Xét hai tam giác vuông: ∆AIE và ∆DIC có:
IA = ID (cmt)
∠AIE = ∠DIC (đối đỉnh)
⇒ ∆AIE = ∆DIC (cạnh góc vuông - góc nhọn kề)
⇒ IE = IC (hai cạnh tương ứng)
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
ta có: HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AH là đường trung trực của BC
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-52^0}{2}=\dfrac{128^0}{2}=64^0\)
Xét ΔABC có \(\widehat{ACB}>\widehat{BAC}\)
mà AB,BC lần lượt là cạnh đối diện của các góc ACB,BAC
nên AB>BC
b: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
a: Ta có: OA+AB=OB
OC+CD=OD
mà OA=OC và AB=CD
nên OB=OD
=>ΔOBD cân tại O
b: Xét ΔABD và ΔCDB có
AB=CD
\(\widehat{ABD}=\widehat{CDB}\)(ΔDOB cân tại O)
BD chung
Do đó: ΔABD=ΔCDB
=>\(\widehat{IDB}=\widehat{IBD}\)
=>ΔIBD cân tại I
=>IB=ID
Ta có: ΔABD=ΔCDB
=>AD=BC
ta có: AD=AI+ID
BC=BI+CI
mà ID=IB và AD=BC
nên IA=IC
=>ΔIAC cân tại I
c: Xét ΔOAI và ΔOCI có
OA=OC
AI=CI
OI chung
Do đó: ΔOAI=ΔOCI
\(S⋮T\)
=>\(3x^3+2x^2-7x+a⋮3x-1\)
=>\(3x^3-x^2+3x^2-x-6x+2+a-2⋮3x-1\)
=>a-2=0
=>a=2
a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên ΔABC vuông tại A
b;
Ta có: \(\widehat{ABQ}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABQ}+60^0=180^0\)
=>\(\widehat{ABQ}=120^0\)
ΔBAQ cân tại B
=>\(\widehat{BQA}=\widehat{BAQ}=\dfrac{180^0-120^0}{2}=30^0\)
BE là phân giác của góc ABC
=>\(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=30^0\)
\(\widehat{CBE}=\widehat{CQA}\)(=300)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//AQ
a: Xét ΔMNE vuông tại M và ΔDNE vuông tại D có
NE chung
NM=ND
Do đó: ΔMNE=ΔDNE
b: ΔMNE=ΔDNE
=>EM=ED
=>E nằm trên đường trung trực của MD(1)
ta có: NM=ND
=>N nằm trên đường trung trực của MD(2)
Từ (1),(2) suy ra NE là đường trung trực của MD
=>NE\(\perp\)MD tại A
=>NA là đường cao của ΔDNM
c: Ta có: \(\widehat{PMD}+\widehat{NMD}=\widehat{NMP}=90^0\)
\(\widehat{DMH}+\widehat{NDM}=90^0\)(ΔHDM vuông tại H)
mà \(\widehat{NMD}=\widehat{NDM}\)(NM=ND)
nên \(\widehat{PMD}=\widehat{DMH}\)
=>MD là phân giác của góc HMP
d: Gọi K là giao điểm của PF và NM
Xét ΔPKN có
NF,PM là các đường cao
NF cắt PM tại E
Do đó:E là trực tâm của ΔPKN
=>KE\(\perp\)NP
mà ED\(\perp\)NP
nên K,E,D thẳng hàng
=>NM,DE,PF đồng quy tại K
Đặt \(\widehat{D}=a;\widehat{E}=b;\widehat{F}=c\)
Số đo các góc D,E,F lần lượt tỉ lệ thuận với 3;1;2
=>\(\dfrac{a}{3}=\dfrac{b}{1}=\dfrac{c}{2}\)
Xét ΔDEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)
=>a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{1}=\dfrac{c}{2}=\dfrac{a+b+c}{3+1+2}=\dfrac{180}{6}=30\)
=>\(a=30\cdot3=90;b=30\cdot1=30;c=30\cdot2=60\)
Vậy: \(\widehat{D}=90^0;\widehat{E}=30^0;\widehat{F}=60^0\)
a: Sửa đề: Phân giác của góc MAN cắt MN tại B
Xét ΔAMB vuông tại M và ΔACB vuông tại C có
AB chung
\(\widehat{MAB}=\widehat{CAB}\)
Do đó: ΔAMB=ΔACB
b: ΔAMB=ΔACB
=>AM=AC và BM=BC
Xét ΔBMG vuông tại M và ΔBCN vuông tại C có
BM=BC
\(\widehat{MBG}=\widehat{CBN}\)(hai góc đối đỉnh)
Do đó:ΔBMG=ΔBCN
=>BG=BN
=>B nằm trên đường trung trực của GN(1)
ΔBMG=ΔBCN
=>MG=CN
ta có: AM+MG=AG
AC+CN=AN
mà AM=AC và MG=CN
nên AG=AN
=>A nằm trên đường trung trực của GN(2)
Từ (1),(2) suy ra AB là đường trung trực của GN