K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)

Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp 

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG

Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)

Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)

=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi và chỉ khi

BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC

9 tháng 4 2020

Giả sử AB là 1 cạnh của hình tám cạnh đều, gọi AB=a.

Vẽ AK là đường co của tam giác OAB

Ta có: \(\widehat{AOB}=\frac{360^o}{8}=45^o\Rightarrow OK=AK=\sin45^o=\frac{OA\sqrt{2}}{2}=\frac{R\sqrt{2}}{2}\)

Nên KB=OB-OK=\(\frac{R\sqrt{2}}{2}-R=R\left(\frac{\sqrt{2}}{2}-1\right)\)

Xét tam giác KAB vuông tại K, theo định lý Pytago ta có:

\(AB^2=AK^2+KB^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[R\left(\frac{\sqrt{2}}{2}-1\right)\right]^2\)

\(AB^2=R^2\left(\frac{1}{2}+\frac{1}{2}-\sqrt{2}+1\right)\)

\(\Rightarrow AB^2=\left(2-\sqrt{2}\right)R^2\)

\(\Rightarrow AB=\sqrt{2-\sqrt{2}}R\)

10 tháng 4 2020

a) ( d) : y = 3mx -1 - m 

<=> y + 1 =( 3x -1 ) 

Ta có : \(\forall m\inℝ\) ta luôn có nghiệm : \(\hept{\begin{cases}y+1=0\\3x-1=0\end{cases}}\)

                                               \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-1\end{cases}}\)

Vậy ( d ) luôn đi qua điểm cố định ( 1 / 3 ; -1 ) 

b) Phương trình hoành độ g điểm giữa ( P ) và ( d ) 

\(\frac{1}{2}x^2=3mx-1-m\left(1\right)\)

<=> x2 -6mx + 2m + 2 =0 ( ko chắc lắm ) 

\(\Delta'=\left(3m\right)^2-2m-2=9m^2-2m-2\)

Để (P) tiếp xúc với (d) =>PT ( 1 ) có nghiệm kép => \(\Delta'=0\Leftrightarrow9m^2-2m-2=0\)

                                                                                 \(\Delta'=19\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{1-\sqrt{19}}{9}\\m_2=\frac{1+\sqrt{19}}{9}\end{cases}}\)