K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

Lỗi nên không vẽ được hình nha bạn !

Bài giải

Kẻ HK \(\perp\)AB tại K ,

Ta có HK//AC ( cùng \(\perp\)AB )  

=> \(\frac{BH}{HC}=\frac{BK}{KA}\)( định lí Ta - lét )

Mà \(\Delta BHK\)vuông cân tại K nên BK = HK => \(\frac{BH}{HC}=\frac{HK}{KA}\left(1\right)\)

Mà \(\Delta AKH\infty\Delta CAM\left(g-g\right)\)

\(\Rightarrow\frac{HK}{KA}=\frac{MA}{AC}=\frac{MA}{AB}=\frac{1}{2}\left(2\right)\)

Từ (1) và ( 2 ) => \(\frac{HB}{HC}=\frac{1}{2}\)

Trả lời:

a) (O′) có OA là đường kính và E(O′) nên OE⊥AC

Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB

⇒E là trung điểm của AC⇒ OE=12BC.

Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.

                                          ~Học tốt!~

10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!

10 tháng 4 2020

gọi số cần tìm là \(\overline{xy}\)

ta có hệ

\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)

\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)

zậy số cần tìm là 48

10 tháng 4 2020

Bài tham khảo  vì mk mới có lớp 6 :( 

Gọi số hàng mà học sinh khối 9 xếp như bình thường là x (x ∈ N*, hàng)

      số học sinh trong một hàng là y (y ∈ N*, học sinh)

Nếu tăng thêm 2 hàng so với bình thường thì số hàng là x + 2 (hàng)

Nếu giảm mỗi hàng đi 3 bạn thì mỗi hàng sẽ có y - 3 (học sinh)

Nếu tăng thêm 2 hàng so với bình thường và mỗi hàng giảm đi 3 học sinh thì còn dư 6 bạn nên ta có pt:

    (x + 2).(y - 3) = xy - 6

<=> xy - 3x + 2y - 6 = xy - 6

<=> -3x + 2y =0 (1)

Nếu giảm đi 3 hàng so với bình thường thì số hàng là x - 3 (hàng)

Nếu mỗi hàng tăng thêm 6 bạn thì mỗi hàng sẽ có y + 6 (học sinh)

Nếu xếp ít đi 3 hàng và mỗi hàng tăng thê 6 bạn so với bình thường thì vẫn còn 12 chỗ trống nên ta có pt:

   (x - 3).(y + 6) = xy + 12 

<=> xy + 6x -3y -18 = xy + 12

<=> 6x -3y = 30 (2)

Từ (1) và (2) =>\(\hept{\begin{cases}-3x+2y=0\\6x-3y=30\end{cases}}\)

\(< =>\hept{\begin{cases}-6x+4y=0\\6x-3y=30\end{cases}}\)

\(< =>\hept{\begin{cases}y=30\\-3x+2y=0\end{cases}}\)

\(< =>\hept{\begin{cases}y=30\left(TMĐK\right)\\x=20\left(TMĐK\right)\end{cases}}\)

Vậy, số học sinh khối 9 của trường THCS là 20.30 = 600 (học sinh)

10 tháng 4 2020

600 hoc sinh

10 tháng 4 2020

Trl :

bạn kia làm đúng rồi nhé 

    hk tốt nhé bạn @

10 tháng 4 2020

a)ĐKXĐ : x > 0 

P = \(\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{1}{\sqrt{x}}.\left(\sqrt{x}-1+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

    = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\sqrt{x}-1}{\sqrt{x}}.\left(1-\frac{1}{\sqrt{x}+1}\right)\)

     = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right).\sqrt{x}}{\sqrt{x}}\)

       = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

Vậy P = \(\frac{\sqrt{x}+1}{\sqrt{x}}\)

b) x = \(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

=> P = \(\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1}=\frac{\sqrt{3}}{\sqrt{3}-1}\)

        = \(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3+1}\right)}=\frac{3+\sqrt{3}}{3-1}=\frac{3+\sqrt{3}}{2}\)

c)\(P\sqrt{x}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}}=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-4}=5\sqrt{x-4}\)

Đặt \(\hept{\begin{cases}a=\sqrt{x}\\b=\sqrt{x-4}\end{cases}\Rightarrow a^2+b^2=x-\left(x-4\right)=4}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=4\\b=5a-4\end{cases}\Rightarrow\hept{\begin{cases}a^2-\left(5a-4\right)^2=4\left(^∗\right)\\b=5a-4\end{cases}}}\)

Từ (*) <=> a2 -(25a2 -40a + 16 ) =4

        <=>  -24a2 + 40a - 20        = 0

=> \(\Delta'=-80< 0\)

=> PT vô nghiệm 

=> ko tồn tại x thỏa mãn

20 tháng 4 2020

bn lm sai đề bài r