K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2024

x/y = 0,8 = 4/5

⇒ x/4 = y/5

⇒ 2x/8 = 3y/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/8 = 3y/15 = (2x + 3y)/(8 + 15) = 46/23 = 2

x/4 = 2 ⇒ x = 2.4 = 8

y/5 = 2 ⇒ y = 2.5 = 10

Vậy x = 8; y = 10

Sửa đề: H là trung điểm của BC

a: Xét ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

b: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔAMH và ΔANH có

AM=AN

\(\widehat{MAH}=\widehat{NAH}\)

AH chung

Do đó: ΔAMH=ΔANH

=>HM=HN

c: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC

Bạn ơi, bạn bổ sung đề trước đi ạ. Đây mới là phần sau của đề thôi

26 tháng 4 2024

a)Xét 2 tam giác ABH và ACH có:
AB=AC(do tam giác ABC cân tại A)
Góc ABC bằng góc ACB (do tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=>Tam giác ABH = tam giác ACH(cạnh - góc - cạnh)
b)Xét 2 tam giác HBA và HCM có:
Góc AHB bằng góc CHM(2 góc đối đỉnh)
HA=HM(giả thiết)
BH=HC(H là trung điểm BC)
=>Tam giác HBA bằng tam giác HCM(cạnh-góc-cạnh)
=>Góc ABH=góc MCH(2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong của đường thẳng AB và MC nên MC//AB
c)Xét tam giác ACM có:
CH là đường trung tuyến(H là trung điểm AM)
AF là đường trung tuyến(F là trung điểm MC)
Mà AF cắt CH tại G(do AF cắt BC tại G;H thuộc BC;G thuộc CH)
=>G là trọng tâm của tam giác ACM
Ta có:
ME cũng là 1 đường trung tuyến của tam giác ACM (E là trung điểm AC)
=>G thuộc ME ( tính chất 3 đường trung tuyến)
=>M,G,E thẳng hàng 

`#3107.101107`

`a)`

Vì `\triangle ABC` cân tại A

`\Rightarrow`\(\text{AB = AC; }\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

Xét `\triangle ABH` và `\triangle ACH`:

`\text{AB = AC}`

\(\widehat{\text{ABC}}=\widehat{\text{ACB}}\)

\(\text{HB = HC (H là trung điểm BC)}\)

\(\Rightarrow\) `\triangle ABH = \triangle ACH (c - g - c)`

`b)`

Xét `\triangle AHB` và `\triangle MHC`:

\(\text{AH = HM}\)

\(\widehat{\text{AHB}}=\widehat{\text{MHC}}\left(\text{đối đỉnh}\right)\)

\(\text{HB = HC }\)

`\Rightarrow \triangle AHB = \triangle MHC (c-g-c)`

\(\Rightarrow\widehat{\text{ABH}}=\widehat{\text{MCH}}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí sole trong

\(\Rightarrow\text{ }\text{MC // AB (tính chất)}\)

`c)`

Vì E là trung điểm của AC; F là trung điểm của MC

\(\Rightarrow\text{EA = EC; FM = FC}\)

Ta có:

\(\left\{{}\begin{matrix}\text{EA = EC}\\\text{FM =FC}\\\text{HA = HM}\end{matrix}\right.\)

\(\Rightarrow\text{AF; ME và CH}\) lần lượt là các đường trung tuyến của `\triangle ACM`

Mà AF cắt HC tại G

\(\Rightarrow\) G là trọng tâm của `\triangle ACM`

\(\Rightarrow\) \(\text{G}\in\text{ME}\)

\(\Rightarrow\) `3` điểm M, G, E thẳng hàng (đpcm).

loading...

NV
26 tháng 4 2024

Trong tam giác ABC, áp dụng định lý về tổng 3 góc:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow120^0+2.\widehat{ABC}=180^0\) (do \(\widehat{ABC}=\widehat{ACB}\))

\(\Leftrightarrow\widehat{ABC}=30^0\)

Vậy góc tạo bởi mái nhà AB và vách tường BE là:

\(180^0-\left(\widehat{ABC}+\widehat{EBC}\right)=180^0-\left(30^0+90^0\right)=60^0\)

Gọi A là biến cố "Số xuất hiện trên thẻ được rút ra là số chia 4 dư 2"

=>A={2;6;10;14;18;22;26;30}

=>n(A)=8

\(n\left(\Omega\right)=30-1+1=30\)

\(P_A=\dfrac{8}{30}=\dfrac{4}{15}\)

26 tháng 4 2024

Góc ACB bằng cái gì thế em?

Chọn D

26 tháng 4 2024

Đề sai

    Bài 1. Cho tam giác ABC cân tại A (góc A nhọn, AB > BC). Gọi M là trung điểm của BC. a) Chứng minh: ∆AMB = ∆AMC b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng minh: AD = MC. c) CD lần lượt cắt AB, AM tại S và E. Chứng minh: BC < 3AS. Bài 2: Cho vuông tại A có , kẻ đường phân giác của . Kẻ vuông góc với tại M. a) Chứng minh .tam giác DAB=tam giác DMB b)...
Đọc tiếp

 

  Bài 1. Cho tam giác ABC cân tại A (góc A nhọn, AB > BC). Gọi M là trung điểm của BC. a) Chứng minh: ∆AMB = ∆AMC b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng minh: AD = MC. c) CD lần lượt cắt AB, AM tại S và E. Chứng minh: BC < 3AS.

Bài 2: Cho vuông tại A có , kẻ đường phân giác của . Kẻ vuông góc với tại M. a) Chứng minh .tam giác DAB=tam giác DMB b) Chứng minh:AC<DC c) Gọi K là giao điểm của đường thẳng và đường thẳng , đường thẳng cắt tại N. Chứng minh và cân tại B.

Bài 3: Cho ABC cân tại A, kẻ AH vuông góc với BC ,  a, Chứng minh rằng: ABH= ACH  b, Gọi N là trung điểm của AC Hai đoạn BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho NK=NG. Chứng minh: G là trọng tâm của tam giác ABC và AG//CK  c, Chứng minh: G là trung điểm BK     Giúp mình với ạ    

3
26 tháng 4 2024

Bài 1

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC

Do M là trung điểm của BC (gt)

⇒ BM = MC

Xét ∆AMB và ∆AMC có:

AB = AC (cmt)

BC = MC (cmt)

AM là cạnh chung

⇒ ∆AMB = ∆AMC (c-c-c)

b) Do AD // BC (gt)

⇒ AD // BM

⇒ ∠DAI = ∠MBI (so le trong)

Xét ∆AID và ∆BIM có:

∠DAI = ∠MBI (cmt)

AI = BI (do I là trung điểm của AB)

∠AID = ∠BIM (đối đỉnh)

⇒ ∆AID = ∆BIM (g-c-g)

⇒ AD = BM (hai cạnh tương ứng)

Mà BM = MC (cmt)

⇒ AD = MC

c) ∆AMB = ∆AMC (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

⇒ ∠AMC = ∠EMC = 90⁰

⇒ ∆MCE vuông tại M

Mà AD // BC (cmt)

⇒ AD ⊥ AM

⇒ ∠DAM = ∠DAE = 90⁰

⇒ ∆ADE vuông tại A

Do AD // BC (gt)

⇒ ∠ADE = ∠MCE (so le trong)

Xét hai tam giác vuông: ∆ADE và ∆MCE có:

AD = MC (cmt)

∠ADE = ∠MCE (cmt)

⇒ ∆ADE = ∆MCE (cạnh góc vuông - góc nhọn kề)

⇒ AE = ME (hai cạnh tương ứng)

⇒ E là trung điểm của AM

Do ∆AID = ∆BIM (cmt)

⇒ ID = IM (hai cạnh tương ứng)

⇒ I là trung điểm của MD

∆ADM có:

AI là đường trung tuyến (do I là trung điểm của MD)

DE là đường trung tuyến (do E là trung điểm của AM)

Mà AI và DE cắt nhau tại S

⇒ S là trọng tâm của ∆ADE

⇒ AS = 2SI

⇒ 3AS = 6SI

Lại có:

AI = BI (cmt)

⇒ AB = AI + BI = 3SI + 3SI = 6SI

⇒ AB = 3AS

Mà AB > BC (gt)

⇒ 3AS > BC

Hay BC < 3AS

26 tháng 4 2024

Bài 3

loading...  

a) Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét hai tam giác vuông: ∆ABH và ∆ACH có:

AB = AC (cmt)

AH là cạnh chung

⇒ ∆ABH = ∆ACH (cạnh huyền - cạnh góc vuông)

b) ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung tuyến của ∆ABC

Lại có N là trung điểm của AC (gt)

⇒ BN là đường trung tuyến thứ hai của ∆ABC

Mà AH và BN cắt nhau tại G (gt)

⇒ G là trọng tâm của ∆ABC

Xét ∆ANG và ∆CNK có:

AN = CN (do N là trung điểm của AC)

∠ANG = ∠CNK (đối đỉnh)

NG = NK (gt)

⇒ ∆ANG = ∆CNK (c-g-c)

⇒ ∠AGN = ∠CKN (hai góc tương ứng)

Mà ∠AGN và ∠CKN là hai góc so le trong

⇒ AG // CK

c) Do G là trọng tâm của ∆ABC (cmt)

⇒ AG = 2GN

Lại có:

NG = NK (gt)

⇒ GK = 2GN

Mà BG = 2GN (cmt)

⇒ BG = GK

⇒ G là trung điểm của BK