Giả sử x, y thuộc tập hợp số thực để 1/x - 1/2y = 1/2x+y. Tìm giá trị của x^2/y^2 + y^2/x^2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x+\frac{1}{x}=3\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^4=3^4\)
\(\Rightarrow x^4+\frac{1}{x^4}+4x^2+6+\frac{4}{x^2}=81\)(1)
Lại có :
\(4\left(x+\frac{1}{x}\right)^2=4\left(3\right)^2\)
\(\Rightarrow4x^2+8+\frac{4}{x^2}=36\)
\(\Rightarrow4x^2+6+\frac{4}{x^2}=34\)(2)
Thay (2) vào (1) ta có : \(x^4+\frac{1}{x^4}+34=81\)
\(\Rightarrow R=x^4+\frac{1}{x^4}=81-34=47\)
a. A = | x + 2 | + | x - 3 | - 7
=> A = | x + 2 | + | 3 - x | - 7
Áp dụng BĐT | a | + | b |\(\ge\)| a + b | , ta có :
A = | x + 2 | + | 3 - x | - 7 \(\ge\) | x + 2 + 3 - x | - 7 = | 5 | - 7 = 5 - 7 = - 2
Dấu "=" xảy ra <=> \(3\ge x\ge-2\)
Vậy minA = - 2 <=> \(3\ge x\ge-2\)
c. C = - x2 + 6x - 4y2 - 4y + 5
=> C = - ( x2 - 6x + 9 ) - ( 4y2 + 4y + 1 ) + 15
=> C = - ( x - 3 )2 - 4 ( y - 1/2 )2 + 15\(\le\)15\(\forall\)x
Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x-3\right)^2=0\\4\left(y-\frac{1}{2}\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
Vậy maxC = 15 <=>\(\orbr{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
Bài làm
\(\frac{3x-3}{\left(x-1\right)^2}+\frac{2x+2}{1-x^2}\)
\(=\frac{3\left(x-1\right)}{\left(x-1\right)^2}-\frac{2\left(x+1\right)}{x^2-1}\)
\(=\frac{3}{x-1}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x-1}-\frac{2}{x-1}=\frac{1}{x-1}\)
Bài làm
\(\frac{3x-3}{\left(x-1\right)^2}+\frac{2x+2}{1-x^2}=\frac{3\left(x-1\right)}{\left(x-1\right)^2}+\frac{2\left(x+1\right)}{\left(1-x\right)\left(x+1\right)}=\frac{3}{x-1}+\frac{2}{1-x}\)
\(=\frac{3\left(1-x\right)}{\left(x-1\right)\left(1-x\right)}+\frac{2\left(x-1\right)}{\left(1-x\right)\left(x-1\right)}=\frac{3-3x+2x-2}{\left(1-x\right)\left(x-1\right)}\)
\(=\frac{1-x}{\left(1-x\right)\left(x-1\right)}=\frac{1}{x-1}\)
\(\frac{1}{x}-\frac{1}{2y}=\frac{1}{2x+y}\)
=> \(\frac{2y-x}{2xy}=\frac{1}{2x+y}\)
=> (2y - x)(2x + y) = 2xy
=> 4xy + 2y2 - 2x2 - xy = 2xy
=> 2(y2- x2) = -xy
=> [2(y2 - x2)]2 = (-xy)2
=> 4(y2 - x2)2 = (xy)2
=> 4(y4 - 2(xy)2 + x4) = (xy)2
=> 4y4 - 8(xy)2 + 4x4 = (xy)2
=> 4(y4 + x4) = 9(xy)2
=> y4 + x4 = \(\frac{9}{4}\left(xy\right)^2\)
Khi đó \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\frac{x^4+y^4}{\left(xy\right)^2}=\frac{\frac{9}{4}\left(xy\right)^2}{\left(xy\right)^2}=\frac{9}{4}\)