Bài 2. Cho hai hàm số y=2x−3 và y=−x^2
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ
b) Tìm tọa độ các giao điểm của hai đồ thị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề nhé! Mình nghĩ đề đúng là:
"a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm Min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)"
Bạn áp dụng BĐT AM-GM là ra nhé
Để đường thẳng (d1) cắt đường thẳng (d2) thì:
\(a\ne a'\)
\(\Rightarrow3\ne1-2m\)
\(\Leftrightarrow2m\ne-2\)
\(\Leftrightarrow m\ne-1\)
Vậy \(m\ne-1\)thì đường thẳng (d1) và đường thẳng (d2) cắt nhau.
Họcc tốtt.
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Để pt có nghiệm duy nhất => \(\frac{m+5}{m}\ne\frac{3}{2}\)
<=> 2(m+5)\(\ne\)3m
<=> 2m+10\(\ne\)3m
<=> m\(\ne\)10
Vậy với m khác 10 thì PT có nghiệm duy nhất
Mình nghĩ đề là:
\(\hept{\begin{cases}m^2x+\left(m+1\right)y=m^2+3m\\-x-2y=m+5\end{cases}}\)
\(\hept{\begin{cases}3kx-2y=9\\-8x+3ky=7\end{cases}}\)(I)
Hệ phương trình (I) có nghiệm duy nhất khi:
\(\frac{a}{a'}\ne\frac{b}{b'}\)
\(\Rightarrow\frac{3k}{-8}\ne\frac{-2}{3k}\)
\(\Leftrightarrow3k.3k\ne\left(-2\right).\left(-8\right)\)
\(\Leftrightarrow9k^2\ne16\)
\(\Leftrightarrow k^2\ne\frac{16}{9}\)
\(\Leftrightarrow k\ne\frac{4}{3}\)hoặc \(k\ne-\frac{4}{3}\)
Vậy \(k\ne\frac{4}{3}\)và \(k\ne-\frac{4}{3}\) thì hệ phương trình (I) có nghiệm duy nhất.
Họcc tốtt.
Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\forall m\)
Vậy hpt luôn có nguyên duy nhất với mọi m
Xét
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)
Vậy phương trình luôn có nghiệp với \(\forall m\)
Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)
Ta có biến đổi sau:
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)
\(=4m^2+4m+1-3m^2-3m+18\)
\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\)
Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)
Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)
Đến đây dễ rồi nè :)
\(2x+6y=\frac{x}{y}-\sqrt{x-2y}\)
\(\Leftrightarrow x-2y-y\sqrt{x-2y}-6y^2=0\)
Đến đây ta có thể biểu diễn đại lượng \(\sqrt{x-2y}\)bởi các biểu thức đơn giản hơn bài toán đã gần như được hoàn thành. Thật vậy,
\(\sqrt{x-2y}=x+3y-2\Leftrightarrow-2y=x+3y-2\Leftrightarrow x=2-5y\)
Tiếp tục thay vào (*) ta có: \(\sqrt{2-7y}=-2y\)
Giải pt này kết hợp với điều kiện ta có nghiệm (x;y)=(12;-2)
\(\sqrt{x+3y}=x+3y-2\Leftrightarrow\left(\sqrt{x+3y}-2\right)\left(\sqrt{x+3y}+1\right)=0\)
\(\Leftrightarrow x+3y=4\). Thay vào (**) ta được \(\sqrt{4-5y}=3y\)
Tiến hành giải và so sanh điều kiện ta có nghiệm \(\left(x;y\right)=\left(\frac{8}{3};\frac{4}{9}\right)\)
Vậy hệ pt có 2 nghiệm (x;y)=(12;-2); \(\left(\frac{8}{3};\frac{4}{9}\right)\)