Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rồi.Đây là cách giải:tan2a=tan[(a+b)+(a-b)]=tan(a+b)+tan(a-b)/1-tan(a+b)tan(a-b)=5+4/1-5.4=9/19.
\(A=\frac{1}{2}\left[2\cos\left(x+y\right)\cos\left(x-y\right)\right]=\frac{1}{2}\left(\cos2x+\cos2y\right)\)
\(=\frac{1}{2}\left[2\left(\cos^2x+\cos^2y\right)-2\right]=m-1\)
A B C G(3;2) N(5;4) M d:x-y-2=0 d'
Ta có: \(d:x-y-2=0\Leftrightarrow\hept{\begin{cases}x=t\\y=t-2\end{cases}}\), M thuộc d suy ra \(M\left(t;t-2\right)\)
\(\Rightarrow\overrightarrow{MG}=\left(3-t;4-t\right)\Rightarrow\overrightarrow{MA}=3\overrightarrow{MG}=\left(9-3t;12-3t\right)\Rightarrow A\left(9-2t;10-2t\right)\)
\(\Rightarrow\overrightarrow{AN}=\left(2t-4;2t-6\right)\)
Vì \(\overrightarrow{AN}\perp\overrightarrow{MG}\)nên \(\overrightarrow{AN}.\overrightarrow{MG}=0\Rightarrow\left(2t-4\right)\left(3-t\right)+\left(2t-6\right)\left(4-t\right)=0\)
\(\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\Rightarrow M\left(3;1\right)\)
Đường thẳng BC: đi qua \(M\left(3;1\right)\),VTPT\(\overrightarrow{MG}\left(0;1\right)\Rightarrow BC:y-1=0.\)
Ta có: d:x−y−2=0⇔{
x=t |
y=t−2 |
, M thuộc d suy ra M(t;t−2)
⇒→MG=(3−t;4−t)⇒→MA=3→MG=(9−3t;12−3t)⇒A(9−2t;10−2t)
⇒→AN=(2t−4;2t−6)
Vì →AN⊥→MGnên →AN.→MG=0⇒(2t−4)(3−t)+(2t−6)(4−t)=0
⇔t2−6t+9=0⇔t=3⇒M(3;1)
Đường thẳng BC: đi qua M(3;1),VTPT→MG(0;1)⇒BC:y−1=0.
cái đấy ttooi giải được trông quen nhưng bạn phải để cho nó hoàn chỉnh đi
Câu 33:
Ta có: \(-x^2+\left(m+2\right)x-4=0\)
\(\Delta=\left(m+2\right)^2-4\cdot\left(-1\right)\cdot\left(-4\right)=m^2+4m+4-16\)
\(=m^2+4m-12\)
Để PT có 2 nghiệm phân biệt thì:
\(\Delta>0\Leftrightarrow m^2+4m-12>0\Leftrightarrow\left(m-2\right)\left(m+6\right)>0\)
\(\Rightarrow\orbr{\begin{cases}m-2>0\\m+6< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m>2\\m< -6\end{cases}}\)
Vậy \(\orbr{\begin{cases}m>2\\m< -6\end{cases}}\) thì PT có 2 nghiệm phân biệt