Cho tam giỏc ABC cú ba góc nhọn, nội tiếp đường tròn tâm O, bán kính R. Kẻ các đường cao AA’, BB’, CC’. Gọi S là diện tớch của tam giỏc ABC và S’ là diện tích của tam giác A’B’C’. 1) Chứng minh rằng AO vuông góc với B’C’
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này giải theo cách lớp 9 thì thực sự bó tay.
Đặt x = y - 2/3
\(x^3+2x^2-23x+8=0\)
\(\left(y-\frac{2}{3}\right)^3+2\left(y-\frac{2}{3}\right)^2-23\left(y-\frac{2}{3}\right)+8=0\)
\(\Leftrightarrow y^3-2y^2+\frac{4}{3}y-\frac{8}{27}+2y^2-\frac{8}{3}y+\frac{8}{9}-23y+\frac{46}{3}+8=0\)
\(\Leftrightarrow y^3-\frac{73}{3}y+\frac{646}{27}=0\) (1)
Đặt \(a=\sqrt{-\frac{4}{3}.\frac{-73}{3}}=\frac{2\sqrt{73}}{3}\)
Đặt \(y=a.\cos t\)
với \(0\le t\le\pi\)
Thay vào (1), ta có:
\(a^3\cos^3t-\frac{73}{3}a\cos t=-\frac{646}{27}\)
\(\Leftrightarrow\frac{292}{9}.\frac{2\sqrt{73}}{3}\cos^3t-\frac{73}{3}.\frac{2\sqrt{73}}{3}\cos t=-\frac{646}{27}\)
\(\Leftrightarrow-\frac{73}{3}.\frac{2\sqrt{73}}{3}\left(-\frac{4}{3}\cos^3t+\cos t\right)=-\frac{646}{27}\)
\(\Leftrightarrow146\sqrt{73}\left(4\cos^3t-3\cos t\right)=646\)
\(\Leftrightarrow146\sqrt{73}.\cos\left(3t\right)=646\)
\(\cos\left(3t\right)=\frac{323\sqrt{73}}{5329}\)
\(t=\frac{\pm arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2k\pi}{3}\left(k\in Z\right)\)
Vì \(0\le t\le\pi\)
\(\Rightarrow t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}\) hoặc \(t=\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)hoặc \(t=\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\)
\(x=y+\frac{2}{3}=-\frac{73}{3}\cos t+\frac{2}{3}\)
Vậy nghiệm của pt là
\(\left\{-\frac{73}{3}\cos\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3};-\frac{73}{3}\cos\left(\frac{-arccos\left(\frac{323\sqrt{73}}{5329}\right)}{3}+\frac{2\pi}{3}\right)+\frac{2}{3}\right\}\)
Các góc đều ở chế độ radian (Hàm arccos trong casio là cos-1)
***P/S: giải theo lớp 9 thì chịu
Nhầm: Đổi \(-\frac{73}{3}\) thành \(\frac{2\sqrt{73}}{3}\)mới đúng
cho a,b,c là các số ko âm có tổng =1. tìm gtnn A=\(\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\)
áp dụng BĐT Cô-si,ta có :
\(1=a+b+c+d\ge2\sqrt{\left(a+b+c\right)d}\)
\(\Rightarrow1\ge4\left(a+b+c\right)d\)
\(\Rightarrow a+b+c\ge4\left(a+b+c\right)^2d\ge16\left(a+b\right)cd\)
\(A=\frac{\left(a+b+c\right)\left(a+b\right)}{abcd}\ge\frac{16\left(a+b\right)^2cd}{abcd}=\frac{16\left(a+b\right)^2}{ab}\ge64\)
Vậy GTNN của A là 64 khi \(=a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)
Mình xử lý phần dấu "=" của @Thanh Tùng DZ@
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+b+c+d=1\\a+b+c=d\\a+b=c\end{cases}}\)và a=b
\(\Leftrightarrow\hept{\begin{cases}8a=1\\d=4a\\c=2a\end{cases}}\)và a=b
\(\Leftrightarrow a=b=\frac{1}{8};c=\frac{1}{4};d=\frac{1}{2}\)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+5+3\right)=40\)
\(\Leftrightarrow p\left(p+3\right)=40\) (khi đặt \(\left(x^2+6x+5\right)=p\)
\(\Leftrightarrow p^2+3p=40\)
\(\Leftrightarrow p^2\cdot2\cdot p\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2=\frac{169}{4}\)
\(\Leftrightarrow\left(p+\frac{3}{2}\right)^2-\left(\frac{13}{2}\right)^2=0\)
\(\Leftrightarrow\left(p+\frac{3}{2}-\frac{13}{2}\right)\left(p+\frac{3}{2}+\frac{13}{2}\right)=0\)
\(\Leftrightarrow\left(p-5\right)\left(p+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}p=5\\p=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+5=5\\x^2+6x+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\x^2+2\cdot x\cdot3+9-9+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(x+3\right)^2=-4\left(\text{vôlí}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
\(\left(x-2\right)\left(x^2+5x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2+5x-7=0\end{cases}}\)
Ta có: \(\Delta=25-4\cdot\left(-7\right)=25+28=53\)
\(\Rightarrow\Delta>0\)
\(\Rightarrow\text{pt có 2 nghiệm pb}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-5-\sqrt{53}}{2}\\x_2=\frac{-5+\sqrt{53}}{2}\end{cases}}\)
\(\text{Vậy pt trên có nghiệm là x=2; x=}\frac{-5\pm\sqrt{53}}{2}\)
Gọi chiều dài của hình chữ nhật là x \(\left(m;x>0\right)\)
chiều rộng của hình chữ nhật là y \(\left(m;y>0\right)\)
Diện tích của hình chữ nhật là: \(x.y=1200\left(m^2\right)\left(1\right)\)
Nếu tăng chiều dài 5m, giảm chiều rộng 10m thì diện tích giảm 300m2.
\(\left(x+5\right).\left(y-10\right)=xy-300\)
\(\Leftrightarrow xy-10x+5y-50=xy-300\)
\(\Leftrightarrow10x-5y=250\)
\(\Leftrightarrow2x-y=50\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}xy=1200\\2x-y=50\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1200}{x}\\2x-\frac{1200}{x}=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\2x^2-1200=50x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\2x^2-50x-1200=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\\left(x-40\right).\left(2x+30\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\x=40\left(TM\right),x=-15\left(L\right)\end{cases}\Leftrightarrow\hept{\begin{cases}y=30\left(TM\right)\\x=40\end{cases}}}\)
Vậy chiều dài của hình chữ nhật là 40m
chiều rộng của hình chữ nhật là 30m
Giải chi tiết:
a) Chứng minh tứ giác AB’HC’ nội tiếp đường tròn.
Xét tứ giác AB’HC’ có ∠AB′H+∠AC′H=900+900=1800⇒∠AB′H+∠AC′H=900+900=1800⇒ Tứ giác AB’HC’ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).
b) Gọi I là giao điểm của hai đường thẳng HD và BC. Chứng minh I là trung điểm của đoạn BC.
Ta có ∠ABD=900∠ABD=900 (góc nội tiếp chắn nửa đường tròn) ⇒AB⊥BD⇒AB⊥BD.
Mà CH⊥AB(gt)⇒BD∥CHCH⊥AB(gt)⇒BD∥CH
Chứng minh tương tự ta có CD∥BHCD∥BH.
⇒⇒ Tứ giác BHCD là tứ giác nội tiếp (Tứ giác có các cặp cạnh đối song song)
Mà BC∩HD=I(gt)⇒IBC∩HD=I(gt)⇒I là trung điểm của BC.
c) Tính AHAA′+BHBB′+CHCC′AHAA′+BHBB′+CHCC′.
Ta có:
SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′SHBCSABC=12HA′.BC12AA′.BC=HA′AA′⇒1−SHBCSABC=1−HA′AA′=AA′−HA′AA′=AHAA′
Chứng minh tương tự ta có: BHBB′=1−SHACSABC;CHCC′=1−SHABSABCBHBB′=1−SHACSABC;CHCC′=1−SHABSABC
⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2⇒AHAA′+BHBB′+CHCC′=1−SHBCSABC+1−SHACSABC+1−SHABSABC=3−SHBC+SHAC+SHABSABC=3−1=2