tìm 3 số x ,y và z biết x=y/2 =z/4 và 2x -4y +z =-6
tìm ba số a,b và c biết a/2=b/-4=c/6 và a-5b+4c=23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K I M
a/
Xét tg vuông AHB và tg vuông AHC có
AB = AC (cạnh bên tg cân)
HB = HC (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
b/
Xét tg ABC có
HB = HC (cmt); HK//AB (gt) => KA=KC (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Xét tg vuông AHC có
KA=KC (cmt)
\(\Rightarrow HK=KA=KC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AHK cân tại K
c/
Xét tg vuông ABC có
HB=HC (cmt); KA=KC (cmt) => I là trọng tâm của tg ABC
=> CI là trung uyến của tg ABC (trong tg 3 đường trung tuyến đồng quy) \(\Rightarrow M\in CI\) => C, I, M thẳng hàng
A B C M A'
Kéo dài AM cắt BC tại A'.
Xét ΔABA' ta có BĐT: AB + BA' > AA' = MA + MA'
hay AB + BA' > MA + MA' (1)
Xét ΔCMA' ta có BĐT: CA' > MC - MA' (2) Cộng theo vế (1) và (2) ta được:
(AB + BA' ) + CA' > ( MA + MA' ) + ( MC - MA' ) <===> AB + (BA' + CA') > MA + MC
Hay: AB + CB > MA + MC (I) Chứng minh tương tự ta có:
AB + AC > MB + MC (II)
CB + AC > MA + MB (III) Cộng theo vế (I),(II) và (III) ta được:
2(AB+AC+CB) > 2(MA + MB + MC)
Hay: MA+MB+MC < AB+AC+CB (đpcm).
Số nguyên dương này không thể xác định vì số chữ số của số đó chưa xác định là bao nhiêu.
Đây là bài Hình học phẳng thuộc thể loại tương đối khó và TUYỆT HAY. Có thể được dùng làm bài mẫu để dạy các học sinh chuyên toán cách phân tích, tư duy để giải một bài toán Hình học phẳng thuộc dạng "đề bài mông lung" (tức là học trò kg biết bắt đầu từ đâu và phải làm gì).
Nếu trong vòng 1 ngày nữa kg có bạn nào post lời giải lên, tôi sẽ giúp bạn.
Kẻ trung tuyến AM của tam giác ABC. Qua B kẻ đường thẳng vuông góc với AB cắt AM tại H. Hạ \(DK\perp AM\) tại K. Khi đó H là điểm cố định.
Vì \(EF=MB=\dfrac{1}{2}BC\) nên \(BF=ME\). Từ đó dễ dàng chứng minh \(\Delta FDB=\Delta MKE\left(c.g.c\right)\) \(\Rightarrow\widehat{DBE}=\widehat{KEB}\). Đồng thời DK//BE nên tứ giác BDKE là hình thang cân \(\Rightarrow\) BDKE là tứ giác nội tiếp.
Lại có \(\Delta BFD\sim\Delta BMA\) mà \(\Delta BFD=\Delta EMK,\Delta BMA=\Delta CMA\)
nên \(\Delta EMK\sim\Delta CMA\)
\(\Rightarrow\widehat{MEK}=\widehat{MCA}\)
Lại có tứ giác ABHC nội tiếp (do \(\widehat{ABH}=\widehat{ACH}=90^o\)) nên \(\widehat{MCA}=\widehat{BHA}=\widehat{BHK}\)
Do đó \(\widehat{BEK}=\widehat{BHK}\) \(\Rightarrow\) Tứ giác BHEK nội tiếp.
Từ đó suy ra 5 điểm B, H, E, K, D cùng thuộc đường tròn (DH). (Trong trường hợp hình vẽ mà \(\widehat{BEK}+\widehat{BHK}=180^o\) thì cũng chứng minh được 5 điểm đó cùng thuộc đường tròn (DH))
\(\Rightarrow\widehat{DEH}=90^o\)
\(\Rightarrow\) đường thẳng qua E vuông góc với DE đi qua điểm H cố định. Ta có đpcm.
a) Xét đường tròn (O1) có AB tiếp xúc với (O1) tại B nên \(\widehat{ABD}=\widehat{BED}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{BD}\))
Tương tự, ta có \(\widehat{ACD}=\widehat{DEC}\)
Cộng theo vế 2 đẳng thức vừa tìm được, ta có:
\(\widehat{ABD}+\widehat{ACD}=\widehat{BEC}\)
\(\Rightarrow180^o-\widehat{BAC}=\widehat{BEC}\)
\(\Rightarrow\widehat{BEC}+\widehat{BAC}=180^o\)
\(\Rightarrow\) Tứ giác ABEC nội tiếp đường tròn (đpcm)
b) Gọi T là giao điểm của DE với (O)
Trong đường tròn (O2), ta có \(\widehat{BDE}=180^o-\widehat{CDE}=180^o-\dfrac{sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{360^o-sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{sđ\stackrel\frown{CE}_{nhỏ}}{2}\) \(=\widehat{ACE}\)
Trong đường tròn (O), ta có \(\widehat{ACE}=\dfrac{sđ\stackrel\frown{AE}}{2}\)
Lại có \(\widehat{BDE}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\)
\(\Rightarrow\dfrac{sđ\stackrel\frown{AE}}{2}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\)
\(\Rightarrow sđ\stackrel\frown{AB}=sđ\stackrel\frown{CT}\)
\(\Rightarrow\) AT//CB
Do đó T là điểm cố định \(\Rightarrow\) DE đi qua T cố định.
Tóm tắt :
Thể tích : 729 m3
Cạnh : ..... m ?
Bài giải
Vì 729 = 9 x 9 x 9 nên cạnh của hình lập phương đó là : 9 m .
Đáp số : 9 m
Độ dài cạnh hình lập phương là:
\(\sqrt[3]{729}=9\left(m\right)\)
Gọi tử số ban đầu là x
(ĐK: x<>-5)
Mẫu số ban đầu là x+5
Khi tăng cả tử và mẫu thêm 5 đơn vị thì được phân số mới là 2/3 nên ta có:
\(\dfrac{x+5}{x+5+5}=\dfrac{2}{3}\)
=>\(\dfrac{x+5}{x+10}=\dfrac{2}{3}\)
=>\(3\left(x+5\right)=2\left(x+10\right)\)
=>\(3x+15=2x+20\)
=>3x-2x=20-15
=>x=5(nhận)
mẫu số ban đầu là 5+5=10
vậy: Phân số ban đầu là \(\dfrac{5}{10}\)
a:
15000m=15km
Thời gian người đó đi hết quãng đường AB là:
\(\dfrac{15}{50}=0,3\left(giờ\right)=18\left(phút\right)\)
b: Người đó đến B lúc:
8h30p+18p=8h48p
Cửa hàng còn lại số kg gạo là:
41098-18095-10773=12230(kg)
Tóm tắt :
Có : 41098 kg gạo
Lần thứ nhất : 18095 kg
Lần thứ hai : 10773 kg
Còn lại : .... kg ?
Bài giải :
Cửa hàng còn lại số ki - lô - gam gạo là :
41098 - 18095 - 10773 = 12230 ( kg )
Đáp số : 12230 kg
HOK tốt !
a) Áp dụng TCDTSBN, ta có :
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{4}=\dfrac{2x-4y+z}{1.2-4.2+4}=\dfrac{-6}{-2}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{1}=3\\\dfrac{y}{2}=3\\\dfrac{z}{4}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)
b) Áp dụng TCDTSBN, ta có :
\(\dfrac{a}{2}=\dfrac{b}{-4}=\dfrac{c}{6}=\dfrac{a-5b+4c}{2-5.\left(-4\right)+4.6}=\dfrac{23}{46}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{1}{2}\\\dfrac{b}{-4}=\dfrac{1}{2}\\\dfrac{c}{4}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)