K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2024

Bài 2:

a; 10\(x\) - 12 = 3\(x\) + 6 + \(x\)

    10\(x\) - 3\(x\) - \(x\) = 12  + 6

        6\(x\)            = 18

          \(x\)             = 18: 6

          \(x\)             = 3

Vậy \(x\) = 3

b; \(\dfrac{x-2}{4}\) - \(\dfrac{x}{12}\) = \(\dfrac{x-1}{6}\) - \(\dfrac{1}{3}\)

    3.(\(x-2\)) - \(x\) = 2.(\(x-1\)) - 4

     3\(x\) - 6  - \(x\)    = 2\(x\) - 2 - 4

    3\(x\) - \(x\) - 2\(x\)   = 6 - 2 - 4

        0 \(\times\) \(x\) = 0 \(\forall\) \(x\)

               vậy  \(x\) \(\in\) R

 

26 tháng 3 2024

c; (\(x+1\))(2\(x\) - 3) = (2\(x\) - 1).(\(x+5\))

      2\(x^2\) - 3\(x\) + 2\(x\) - 3 = 2\(x^2\) + 10\(x\) - \(x\) - 5

      2\(x^2\) - 3\(x\) + 2\(x\) - 3 - 2\(x^2\) - 10\(x\) + \(x\) + 5 = 0

     (2\(x^2\) - 2\(x^2\)) + (- 3\(x\) + 2\(x\) - 10\(x\) + \(x\)) + (5 - 3) = 0

              0 -  10\(x\)     + 2 = 0

                   10\(x\)  = 2

                       \(x\)  = \(\dfrac{2}{10}\)

                         \(x=\dfrac{1}{5}\)

       Vậy \(x=\dfrac{1}{5}\)

    

a: \(A=\dfrac{x}{x-1}+\dfrac{2x}{1-x^2}-\dfrac{1}{x+1}\)

\(=\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x+1}\)

\(=\dfrac{x\left(x+1\right)-2x-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+x-3x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

b: |x-1|=2

=>\(\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Khi x=3 thì \(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

c: Để A là số nguyên thì \(x-1⋮x+1\)

=>\(x+1-2⋮x+1\)

=>\(-2⋮x+1\)

=>\(x+1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{0;-2;1;-3\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;-2;-3\right\}\)

26 tháng 3 2024

Do khi bớt số đó đi 3 thì được số có hai chữ số giống nhau nên chữ số hàng đơn vị lớn hơn chữ số hàng chục là 3

Chữ số hàng đơn vị là:

(11 + 3) : 2 = 7

Chữ số hàng chục là:

7 - 3 = 4

Vậy số cần tìm là 47

2 tháng 4 2024

Lời giải của bạn @Kiều Vũ Linh chỉ được 6 điểm. Vì đúng đáp số nhưng LẬP LUẬN SAI (Chính xác là xét thiếu trường hợp, dẫn đến kết luận thiếu).

Bạn ấy nói: "Do khi bớt số đó đi 3 thì được số có hai chữ số giống nhau nên chữ số hàng đơn vị lớn hơn chữ số hàng chục là 3".

Điều đó sai. Vì bạn bỏ sót trường hợp phép trừ "mượn" 1 đơn vị hàng chục. Ví dụ: 80-3=77 ==> ở đây "Chữ số hàng đơn vị không lớn hơn chữ số hàng chục là 3" như bạn kết luận.

Trước khi bạn lập luận như vậy, bạn phải loại trừ trường hợp như ví dụ tôi nêu, đó là: "Do tổng các chữ số của số có 2 chữ số cần tìm là 11 nên cả 2 chữ số của số cần tìm đều >0".

Sau đó bạn mới có thể chốt: "Do khi bớt số đó đi 3 thì được số có hai chữ số giống nhau nên chữ số hàng đơn vị lớn hơn chữ số hàng chục là 3."

================================================

BẠN NÀO THỰC SỰ MUỐN GIỎI TOÁN THÌ LIÊN HỆ VỚI MÌNH NHÉ (h u n g v t 1 8 1 @ g m a i l . c o m). Nhà mình gần SVĐ Mỹ Đình. MÌNH KÈM CẶP, DẠY CÁC BẠN CÁCH TƯ DUY ĐỂ GIỎI TOÁN (từ lớp 3 - lớp 12). Mình kg công tác trong ngành giáo dục nhưng là dân Chuyên toán Sư Phạm những năm 1986-1989, và đã từng giảng dạy chuyên môn cho các Tiến sỹ ngoại quốc. (Mình đã nghỉ hưu nên có nhiều thời gian. Kinh tế mình đủ sống nên mình giúp các bạn MIỄN PHÍ). CHỈ YÊU CẦU CÁC BẠN HỌC NGHIÊM TÚC.

26 tháng 3 2024

loading... 

a) Do ∆DEF cân tại D (gt)

⇒ DE = DF

Do M là trung điểm của EF (gt)

⇒ ME = MF

Xét ∆DEM và ∆DFM có:

DE = DF (cmt)

DM là cạnh chung)

ME = MF (cmt)

⇒ ∆DEM = ∆DFM (c-c-c)

b) Sửa đề: Chứng minh DM ⊥ EF

Do ∆DEM = ∆DFM (cmt)

⇒ ∠DME = ∠DMF (hai góc tương ứng)

Mà ∠DME + ∠DMF = 180⁰ (kề bù)

⇒ ∠DME = ∠DMF = 180⁰ : 2 = 90⁰

⇒ DM ⊥ EF

c) Xét ∆DEM và ∆KFM có:

DM = KM (gt)

∠DME = ∠KMF (đối đỉnh)

ME = MF (cmt)

⇒ ∆DEM = ∆KFM (c-g-c)

⇒ DE = KF (hai cạnh tương ứng)

Mà DE = DF (cmt)

⇒ KF = DF

⇒ ∆FDK cân tại F

loading...  loading...  

26 tháng 3 2024

loading... 

26 tháng 3 2024

a) Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow k^3=\dfrac{x}{3}.\dfrac{y}{4}.\dfrac{z}{5}=\dfrac{480}{3.4.5}=8\)

\(\Rightarrow k=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)

b) Ta có :

\(\dfrac{a}{4}=\dfrac{b}{8}=\dfrac{c}{16}\)

\(\Rightarrow\left(\dfrac{a}{4}\right)^2=\left(\dfrac{b}{8}\right)^2=\left(\dfrac{c}{16}\right)^2\)

\(\Rightarrow\dfrac{a^2}{16}=\dfrac{b^2}{64}=\dfrac{c^2}{256}\)

Áp dụng TCDTSBN, ta có :

\(\dfrac{a^2}{16}=\dfrac{b^2}{64}=\dfrac{c^2}{256}=\dfrac{a^2-b^2}{16-64}=\dfrac{-60}{-48}=\dfrac{5}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2}{16}=\dfrac{5}{4}\\\dfrac{b^2}{64}=\dfrac{5}{4}\\\dfrac{c^2}{256}=\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=4.5\\b^2=16.5\\c^2=256.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\pm2\sqrt[]{5}\\b=\pm4\sqrt[]{5}\\c=\pm16\sqrt[]{5}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=\pm2\sqrt[]{5}\\b=\pm4\sqrt[]{5}\\c=\pm16\sqrt[]{5}\end{matrix}\right.\)

26 tháng 3 2024

a) Áp dụng TCDTSBN, ta có :

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{4}=\dfrac{2x-4y+z}{1.2-4.2+4}=\dfrac{-6}{-2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{1}=3\\\dfrac{y}{2}=3\\\dfrac{z}{4}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)

b) Áp dụng TCDTSBN, ta có :

\(\dfrac{a}{2}=\dfrac{b}{-4}=\dfrac{c}{6}=\dfrac{a-5b+4c}{2-5.\left(-4\right)+4.6}=\dfrac{23}{46}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{1}{2}\\\dfrac{b}{-4}=\dfrac{1}{2}\\\dfrac{c}{4}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)

26 tháng 3 2024

A B C H K I M

a/

Xét tg vuông AHB và tg vuông AHC có

AB = AC (cạnh bên tg cân)

HB = HC (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

b/

Xét tg ABC có

HB = HC (cmt); HK//AB (gt) => KA=KC (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Xét tg vuông AHC có

KA=KC (cmt)

\(\Rightarrow HK=KA=KC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AHK cân tại K

c/

Xét tg vuông ABC có

HB=HC (cmt); KA=KC (cmt) => I là trọng tâm của tg ABC 

=> CI là trung uyến của tg ABC (trong tg 3 đường trung tuyến đồng quy) \(\Rightarrow M\in CI\) => C, I, M thẳng hàng

 

 

  loading...  loading...  loading...  

26 tháng 3 2024

A B C M A'

Kéo dài AM cắt BC tại A'.

Xét ΔABA' ta có BĐT: AB + BA' > AA' = MA + MA'

                            hay AB + BA' > MA + MA'  (1)

Xét ΔCMA' ta có BĐT:    CA' > MC - MA' (2)  Cộng theo vế (1) và (2) ta được:

(AB + BA' ) + CA'  > ( MA + MA' ) + ( MC - MA' )  <===> AB + (BA' + CA') > MA + MC

Hay:  AB + CB > MA + MC  (I)  Chứng minh tương tự ta có:

         AB + AC > MB + MC  (II)

         CB + AC > MA + MB  (III) Cộng theo vế (I),(II) và (III) ta được:

2(AB+AC+CB) > 2(MA + MB + MC) 

Hay: MA+MB+MC < AB+AC+CB    (đpcm).

 

26 tháng 3 2024

Số nguyên dương này không thể xác định vì số chữ số của số đó chưa xác định là bao nhiêu.

26 tháng 3 2024

Đây là bài Hình học phẳng thuộc thể loại tương đối khó và TUYỆT HAY. Có thể được dùng làm bài mẫu để dạy các học sinh chuyên toán cách phân tích, tư duy để giải một bài toán Hình học phẳng thuộc dạng "đề bài mông lung" (tức là học trò kg biết bắt đầu từ đâu và phải làm gì).

Nếu trong vòng 1 ngày nữa kg có bạn nào post lời giải lên, tôi sẽ giúp bạn.

26 tháng 3 2024

 Kẻ trung tuyến AM của tam giác ABC. Qua B kẻ đường thẳng vuông góc với AB cắt AM tại H. Hạ \(DK\perp AM\) tại K. Khi đó H là điểm cố định.

 Vì \(EF=MB=\dfrac{1}{2}BC\) nên \(BF=ME\). Từ đó dễ dàng chứng minh \(\Delta FDB=\Delta MKE\left(c.g.c\right)\) \(\Rightarrow\widehat{DBE}=\widehat{KEB}\). Đồng thời DK//BE nên tứ giác BDKE là hình thang cân \(\Rightarrow\) BDKE là tứ giác nội tiếp.

 Lại có \(\Delta BFD\sim\Delta BMA\) mà \(\Delta BFD=\Delta EMK,\Delta BMA=\Delta CMA\)

 nên \(\Delta EMK\sim\Delta CMA\)

 \(\Rightarrow\widehat{MEK}=\widehat{MCA}\)

 Lại có tứ giác ABHC nội tiếp (do \(\widehat{ABH}=\widehat{ACH}=90^o\)) nên \(\widehat{MCA}=\widehat{BHA}=\widehat{BHK}\)

 Do đó \(\widehat{BEK}=\widehat{BHK}\) \(\Rightarrow\) Tứ giác BHEK nội tiếp.

 Từ đó suy ra 5 điểm B, H, E, K, D cùng thuộc đường tròn (DH). (Trong trường hợp hình vẽ mà \(\widehat{BEK}+\widehat{BHK}=180^o\) thì cũng chứng minh được 5 điểm đó cùng thuộc đường tròn (DH))

 \(\Rightarrow\widehat{DEH}=90^o\)

 \(\Rightarrow\) đường thẳng qua E vuông góc với DE đi qua điểm H cố định. Ta có đpcm.