Cho ( a + b + c) 2 = a2 + b2 + c2 .
CMR : \(\frac{1}{a^3}\)+\(\frac{1}{b^3}\)+\(\frac{1}{c^3}\)= \(\frac{3}{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=\left(x+1\right)^x-2\left(x^2+x-2\right)+2\)
a, Thay x = -3 ta được :
\(=\left(-3+1\right)^{-3}-2\left[\left(-3\right)^2-3-2\right]+2\)
\(=-\frac{1}{8}-8+2=-\frac{1}{8}-\frac{64}{8}+\frac{16}{8}=\frac{-49}{8}\)
b, Ta có : \(m=0\)hay \(\left(x+1\right)^x-2\left(x^2+x-2\right)+2=0\)
... =))?
a) x3 = 25x
=> x3 - 25x = 0
=> x(x2 - 25) = 0
=> x(x - 5)(x + 5) = 0
=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x = 0 hoặc x = 5 hoặc x = -5
b) x2 - 6x + 8 = 0
=> x2 - 6x + 9 - 1 = 0
=> (x - 3)2 - 12 = 0
=> (x - 3 - 1)(x - 3 + 1) = 0
=> (x - 4)(x - 2) = 0
=> \(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2
b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
Phần c nản quá.
a) 2x(x + y) - y(y + 2x)
= 2x2 + 2xy - y2 - 2xy
= 2x2 - y2
b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
= \(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)
= \(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)
Ta có (a + b + c)2 = a2 + b2 + c2
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = a2 + b2 + c2
=> 2(ab + bc + ca) = 0
=> ab + bc + ca = 0
=> \(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}=0\)
=> \(abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(\text{Vì }abc\ne0\right)\)
=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{a^2b}+\frac{3}{ab^2}=-\frac{1}{c^3}\)
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
=> \(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)(Vì 1/a + 1/b = -1/c)
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)(đpcm)