tìm gía trị nhỏ nhất của: A= | x-a |+| x-b |+| x-c |+| x-d | với a<b<c<d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
=> có 3 thừa số âm, 1 thừa số dương
dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1
mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm
dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10
giới hạn vị trí của x^2, ta được:
10>x^2>1^2
=> x^2= {4;9}
nếu x^2=4 thì x^2-4=0 => biểu thức=0
vậy x^2=9 thì x={3;-3}
a)P(x)=5x^3+3x^2-2x-5
Q(x)=5x^3+2x^2-2x+4
b)P(x)+Q(x)=10x^3+5x^2-4x-1
P(x)-Q(x)=x^2-9
c)x=3
_CÓ AI GIỎI TOÁN THÌ GIÚP MK NHA RẤT CẢM ƠN ______________
Bài 4:
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) (với mọi a;b;c)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)
<=>a=b;b=c;c=a
<=>a=b=c(đpcm)
chứng minh đa thức sau không có nghiệm:K(x)=(x+2)^2+4x^2+5