Cho đa thức
Q= \(x^{17}-1997x^{16}+1997x^{15}-1997x^{14}+...+1997x-1\)
Tính giá trị của đa thức Q tại x = 1996
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
A) p= 0
B) a = 0
Còn cách giải thì chịu bạn có thể tham
khảo chỗ khác nha !!!
+)đặt f(x)=3x2-5x+2=0
3x2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
3x=2 hoặc x=1
x=2/3 hoặc x=1
+)đặt f(x)=3x^2-5x+2=0
3x^2-3x-2x+2=0
3x(x-1)-2(x-1)=0
(3x-2)(x-1)=0
=>x=2/3 hoặc x=1
\(P\left(x\right)+Q\left(x\right)=\left(x^3-2x+1\right)+\left(2x^2-2x^3+x-5\right)\)
\(=x^3-2x+1+2x^2-2x^3+x-5\)
\(=-\left(2x^3-x^3\right)+2x^2-\left(2x-x\right)-\left(5-1\right)\)
\(=-x^3+2x^2-x-4\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-2x+1\right)-\left(2x^2-2x^3+x-5\right)\)
\(=x^3-2x+1-2x^2+2x^3-x+5\)
\(=\left(x^3+2x^3\right)-2x^2-\left(2x+x\right)+\left(1+5\right)\)
\(=3x^3-2x^2-3x+6\)
\(\frac{1}{4}x-1-\frac{2}{3}x+1+\frac{4}{5}x-1=\frac{2}{3}\)
\(\left(\frac{1}{4}x-\frac{2}{3}x+\frac{4}{5}x\right)+\left(1-1-1\right)=\frac{2}{3}\)
\(\frac{23}{60}x-1=\frac{2}{3}\)
\(\frac{23}{60}x=\frac{2}{3}+1\)
\(\frac{23}{60}x=\frac{2+3}{3}\)
\(\frac{23}{60}x=\frac{5}{3}\)
\(x=\frac{5}{3}\div\frac{23}{60}\)
\(x=\frac{5}{3}\times\frac{60}{23}\)
\(x=\frac{100}{23}\)
\(\left(\frac{1}{4}x-1\right)-\left(\frac{2}{3}x-1\right)+\left(\frac{4}{5}x-1\right)=\frac{2}{3}\)
<=> \(\frac{1}{4}x-1-\frac{2}{3}x+1+\frac{4}{5}x-1=\frac{2}{3}\)
<=> \(\frac{1}{4}x-\frac{2}{3}x+\frac{4}{5}x-1+1-1=\frac{2}{3}\)
<=> \(\frac{23}{60x}=\frac{2}{3}\)=> x=\(\frac{40}{23}\)
Giải cụ thể theo cách lớp 7 đó...còn giải theo cách lớp 8 đơn giản hơn nhiều..nhưng làm theo lớp 8 sợ khó hiểu với lớp 7
>.<