tìm max C= 1- (x+3)(x+5)/ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-43). 16 + (-84).43 - (-43)
= - 43.(16 + 84 - 1)
= -43.(100 - 1)
= -43 . 99
= - 4257
= -
`(2345 + 45) - 2345`
`= 2345 + 45 - 2345`
`= (2345 - 2345) + 45`
`= 0 + 45`
`=45`
`(2x - 5)(2x + 1) = (2x - 5)(x + 4)`
`(2x - 5)(2x + 1) - (2x - 5)(x +4) = 0`
`(2x - 5)[(2x + 1) - (x + 4)]=0`
`(2x - 5)(2x + 1 - x - 4) = 0`
`(2x - 5)(x - 3) = 0`
\(\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\\ \left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\\ \left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
(2\(x-5\)).(2\(x+1\)) = (2\(x-5\)).(\(x+4\))
(2\(x-5\))(2\(x+1\)) - (\(2x-5\)).(\(x+4\)) = 0
(2\(x-5\))[2\(x+1\) - \(x-4\)] = 0
(2\(x-5\)).[(2\(x-x\)) - (4 - 1)] = 0
(2\(x\) - 5).[\(x\) - 3] = 0
\(\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {\(\dfrac{5}{2}\); 3}
52 - 2x = -11
25 - 2x = - 11
2x = 25 - ( - 11 )
2x = 36
x = 36 : 2
x = 18
Vẫy x = 18
`5^2 - 2x = -11`
`=> 25 - 2x = -11`
`=> 2x = 25 - (-11) `
`=> 2x = 25 + 11`
`=> 2x = 36`
`=> x = 36 : 2`
`=> x = 18`
Vậy ...
\(\dfrac{16}{2^x}\) = 2
\(\dfrac{2^4}{2^x}\) = 2
2\(4-x\) = 21
4 - \(x=1\)
\(x=4-1\)
\(x=2\)
Vậy \(x=3\)
Cách hai: \(\dfrac{16}{2^x}\) = 2
2\(^x\) = 16 : 2
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
`270 - (3^2 xx 2 + 7^15 : 7^13)`
`= 270 - (9 xx 2 + 7^(15-13))`
`= 270 - (18 + 7^2)`
`= 270 - (18 + 49)`
`= 270 - 67`
`= 203`
C = 1 - \(\dfrac{\left(x+3\right)\left(x+5\right)}{2}\)
C = 1 - \(\dfrac{x^2+5x+3x+15}{2}\)
C = 1 - \(\dfrac{x^2+\left(5x+3x\right)+15}{2}\)
C = 1 - \(\dfrac{x^2+8x+16-1}{2}\)
C = 1 - \(\dfrac{\left(x^2+2.x.4+4^2\right)}{2}\) + \(\dfrac{1}{2}\)
C = (1 + \(\dfrac{1}{2}\)) - \(\dfrac{\left(x+4\right)^2}{2}\)
C = \(\dfrac{3}{2}\)- \(\dfrac{\left(x+4\right)^2}{2}\)
Vì (\(x+4\))2 ≥ 0 \(\forall\) \(x\) ⇒ - \(\dfrac{1}{2}\)(\(x+4\))2 ≤ 0 ∀ \(x\)
⇒ \(\dfrac{3}{2}\) - \(\dfrac{\left(x+4\right)^2}{2}\) ≤ \(\dfrac{3}{2}\) dấu bằng xảy ra khi \(x+4\) = 0 ⇒ \(x=-4\)
Vậy giá trị lớn nhất của biểu thức C là \(\dfrac{3}{2}\) xảy ra khi \(x=-4\)