K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

Phương trình bậc 2 chỉ có tối đa là 2 nghiệm thôi bạn nhé!

Bạn kiểm tra lại đề!

22 tháng 6 2020

Đáp án:

Giải thích các bước giải:

Giả sử AB là cây cần do, CD là cọc EF là khoảng cách từ mắt tới chân.

∆KDF ∽ ∆HBF

=> HBKD=HFKFHBKD=HFKF

=> HB  = HF.KDKFHF.KDKF

mà HF = HK + KF =AC + CE = 15 + 0,8 = 15.8m 

KD =  CD – CK = CD – EF = 2 – 1,6 = 0,4 m

Do đó: HB = 7,9 m 

 Vậy chiều cao của cây là 7,9

22 tháng 6 2020

ĐK: \(x\ge2\)

Đặt: \(t=\sqrt{x-2}\ge0\)

<=> \(t^2+2=x\)

khi đó: 

\(A=\frac{t^2+2+3t}{t^2+2+4t+1}=\frac{t^2+3t+2}{t^2+4t+3}=\frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{t+2}{t+3}=1-\frac{1}{t+3}\ge1-\frac{1}{3}=\frac{2}{3}\)

Dấu "=" xảy ra <=> t = 0 hay x = 2 thỏa mãn

Vậy min A = 2/3 tại x = 2.