K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2020

hiển nhiên \(a,b\ge c\) nên không mất tính tổng quát, ta giả sử \(a\ge b\ge c\)

Ta co: 

\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow\)\(ab\ge a+b-1\)

\(bc\ge0\)

\(c\left(a-b\right)\ge0\)\(\Leftrightarrow\)\(ca\ge bc\ge c\)

\(\frac{9}{ab+bc+ca}-2\le\frac{9}{a+b-1+c}-2=\frac{5}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a;b;c\right)=\left(2;1;0\right)\\\left(a;b;c\right)=\left(1;2;0\right)\end{cases}}\)

26 tháng 6 2020

Hoành độ giao điểm của ( p) và (f) là nghiệm phương trình: 

x^2 = (m-1) x + 2 

<=> x^2 - ( m - 1) x - 2 = 0 (1) 

Vì \(\frac{c}{a}=-2< 0\) nên phương trình luôn có 2 nghiệm phân biệt 

=> ( P) cắt (f) tại hai điểm M; N phân biệt với mọi m 

g/s: M( a; (m-1) a + 2 ) ; N ( b; (m-1) b + 2 ) 

=> MN= \(\sqrt{\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2}\)

MN nhỏ nhất 

<=> \(\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2\) nhỏ nhất 

Ta có: \(\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2=\left(a-b\right)^2\left(1+\left(m-1\right)^2\right)\)

\(\left[\left(a+b\right)^2-4ab\right]\left(1+\left(m-1\right)^2\right)\)

\(\left[\left(m-1\right)^2+8\right]\left(1+\left(m-1\right)^2\right)\)

\(\ge8.1=8\)

Dấu "=" xảy ra <=> m = 1 

min MN = \(\sqrt{\left(a-b\right)^2+\left(m-1\right)^2\left(a-b\right)^2}\)= 2\(\sqrt{2}\)

26 tháng 6 2020

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)

Dấu "=" xảy ra <=> x = y = z = 2

GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2

26 tháng 6 2020

a) Gọi I là điểm chính giữa cung AB => IA = IB 

Trên tia đối tia IB và tia MB lấy điểm Q  và N sao cho: QI = IB và NM = MA 

Ta có: \(\Delta\)AMN vuông cân tại M

=> ^ANB = ^ANM = 45 độ  (1) 

\(\Delta\)ABQ  có AI = IB = IQ

=> \(\Delta\)ABQ vuông cân tại A 

=> ^AQB = 45 độ  (2) 

Từ (1); (2) => ^AQB = ^ANB 

=> ANQB nội tiếp

=> ^QNB = ^QAB = 90 độ 

=> \(\Delta\)BNQ vuông cân tại N 

=> \(MA+MB=MN+MB=NB\le BQ=IB+IQ=IB+IA\)không đổi

=> \(\frac{1}{MA}+\frac{1}{MB}\ge\frac{4}{MA+MB}\ge\frac{4}{IA+IB}\)

Dấu "=" xảy ra <=> MA = MB; MA + MB = IA + IB mà IA = IB => M trùng I hay M nằm giữa cung AB

26 tháng 6 2020

Xét \(\Delta_1=a^2-b;\Delta_2=b^2-a\)

ta có: \(\Delta_1+\Delta_2=a^2-b+b^2-a=\left(a^2+b^2\right)-\left(a+b\right)\)

\(\ge\frac{\left(a+b\right)^2}{2}-\left(a+b\right)=\left(a+b\right)\left(a+b-2\right)\)

Vì \(a+b\ge2\) nên \(\left(a+b\right)\left(a+b-2\right)\ge0\)

=> \(\Delta_1+\Delta_2\ge0\)

=> Trong 2 số \(\Delta_1;\Delta_2\) có ít nhất 1 số không âm 

=> Trong hai phương trình: \(\left(x^2+2ax+b\right);\left(x^2+2bx+a\right)\) có ít nhất 1 phương trình có nghiệm 

=> \(\left(x^2+2ax+b\right)\left(x^2+2bx+a\right)\) luôn có nghiệm 

26 tháng 6 2020

Trình bày khác cô Chi chút ạ =))

Xét \(\Delta_1=a^2-b;\Delta_2=b^2-a\)

Ta có:\(\Delta_1+\Delta_2=a^2-a+b^2-b\ge a^2-a+b^2-b+2-a-b\)

\(=a^2-2a+1+b^2-2b+1=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

Khi đó ít nhất một trong \(\Delta_1;\Delta_2\) có nghiệm => đpcm

26 tháng 6 2020

\(\Delta\)\(=\left(2m+3\right)^2-4\left(3m+1\right)=4m^2+5\)> 0 

=> phương trình luôn có 2 nghiệm phân biệt 

Điều kiện là \(\Delta\) là số chính phương

=> Đặt: \(t^2=4m^2+5\Leftrightarrow\left(t-2m\right)\left(t+2m\right)=5\)

Vì t và m là số nguyên 

=> Giải ra được: m = 1 hoặc m  = - 1

+) Với m = 1 ta có: \(x^2-5x+4=0\)  có nghiệm nguyên: x = 4; x = 1=> m = 1thỏa mãn

+) Với m = -1 ta có:  \(x^2-x-2=0\) có nghiệm nguyên => m = - 1 thỏa mãn 

Kết luận:...

27 tháng 6 2020

Em cảm ơn cô =)