K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, xét từ giác AMNC có 
\(\widehat{CAM}\)=90CAM^=90∘ (Ac là tiếp tuyến của (O) , ˆ

\(\widehat{CNM}\)=90CNM^=90∘ (MN vuông góc với CD) => ˆ\(\widehat{CAM}+\widehat{CNM}\)=180

=> AMNC nội tiếp

Xét tứ giác BMND có ˆ\(\widehat{MNB}\)MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)

=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180

=> Tứ giác BDMN nội tiếp

b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)

=> \(\)\(\widehat{CMN}\)CMN^=1212 cung AN(1)

Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)

\(\widehat{NMD}\)=1212 cung NB(2)

Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^1212 (cung AN + cung NB) 

=> \(\widehat{CMD}\)1212 cung AB = 18021802=90

=> tam giác CMD vuông tại M

Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM) 

Mà \(\widehat{MCD}+\widehat{NBM}\)=90

=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)

Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)

Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)

Xét tam giác ANB và CMD ta cs

\(\widehat{ANB}=\widehat{CMD}\) (=90)

\(\widehat{MCD}=\widehat{NAD}\)

=> 2 tam giác này bằng nhau

5 tháng 7 2020

Đành chơi trò như này vậy:

\(A=\frac{x^2-3x+2019}{x^2}=1-\frac{3}{x}+\frac{2019}{x^2}\)

Đặt \(a=\frac{1}{x}\)

Khi đó:\(A=2019a^2-3a+1=2019\left(a^2-2\cdot\frac{3}{4038}\cdot a+\frac{9}{4038^2}\right)+\frac{2689}{2692}\)

\(=2019\left(a-\frac{3}{4038}\right)^2+\frac{2689}{2692}\ge\frac{2689}{2692}\)

Đẳng thức xảy ra tại a=1/1346