cho P= 1+50+51+52+53+...+5100.P có phải là số chính phương không vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số gam dung dịch pha được từ 36 gam muối:
36 : 0,9% = 4000 (g)
Số lít dung dịch muối thu được:
4000 g = 4 kg = 4 lít
a: Xét ΔMAB và ΔMCI có
MA=MC
\(\widehat{AMB}=\widehat{CMI}\)(hai góc đối đỉnh)
MB=MI
Do đó: ΔMAB=ΔMCI
b: ta có: ΔMAB=ΔMCI
=>\(\widehat{MAB}=\widehat{MCI}\)
mà \(\widehat{MAB}=90^0\)
nên \(\widehat{MCI}=90^0\)
=>CI\(\perp\)AC
Ta có: ΔMAB=ΔMCI
=>AB=CI
mà AB<CB
nên CI<CB
Xét ΔCIB có \(\widehat{CBI};\widehat{CIB}\) lần lượt là góc đối diện của các cạnh CI,CB
mà CI<CB
nên \(\widehat{CBI}< \widehat{CIB}\)
c: Ta có: KC+CM=KM
=>\(KM=CA+\dfrac{1}{2}CA=\dfrac{3}{2}CA=\dfrac{3}{2}KC\)
=>\(KC=\dfrac{2}{3}KM\)
Xét ΔKIB có
KM là đường trung tuyến
\(KC=\dfrac{2}{3}KM\)
Do đó: C là trọng tâm của ΔKIB
=>IC đi qua trung điểm của BK
a: Xét ΔHBA và ΔABC có
\(\widehat{HBA}\) chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)
Do đó:ΔHBA~ΔABC
\(\sqrt{x^2-x-1}=\sqrt{x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-x-1=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=2\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
\(f'\left(x\right)=\dfrac{x-1}{\sqrt{x^2-2x}}\)
\(f'\left(x\right)\ge f\left(x\right)\Leftrightarrow\dfrac{x-1}{\sqrt{x^2-2x}}\ge\sqrt{x^2-2x}\)
\(\Rightarrow x-1\ge x^2-2x\)
\(\Rightarrow x^2-3x+1\le0\)
\(\Rightarrow\dfrac{3-\sqrt{5}}{2}\le x\le\dfrac{3+\sqrt{5}}{2}\)
Kết hợp ĐKXĐ \(\Rightarrow2\le x\le\dfrac{3+\sqrt{5}}{2}\)
\(\Rightarrow x=2\) là giá trị nguyên duy nhất thỏa mãn
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{47.49}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{2}.\dfrac{48}{49}\)
\(=\dfrac{24}{49}\)
Giải:
Số học sinh Giỏi của lớp 6A là:
\(48\cdot\dfrac{1}{3}=16\left(\text{ học sinh}\right)\)
Số học sinh còn lại là:
\(48-16=32\left(\text{học sinh}\right)\)
Số học sinh Khá là:
\(32\cdot\dfrac{7}{8}=24\left(\text{học sinh}\right)\)
Số học sinh Trung bình là:
\(48-16-24=8\left(\text{học sinh}\right)\)
\(\text{Vậy }Lớp\text{ }6A\text{ }\text{có}:16\text{ học sinh Giỏi};\text{ 28 học sinh Khá};\text{ 8 học sinh Trung bình}\)
P = 1 + 50 + 51 + 52 + 53 + ... + 5100
P = 1 + 1 + 5.( 1 + 5 + 52 + ... + 599)
Vì 1 + 5 + 52 + ... + 599 là tổng của 100 số lẻ nên tổng đó là số chẵn
⇒ 5.(1 + 5 + 52+ ... + 599) = \(\overline{..0}\) (tích của 5 với bất cứ thừa số chẵn nào cùng có tận cùng là 0)
Vậy P = 2 + \(\overline{..0}\)
P = \(\overline{...2}\)
Kết luận P = 1 + 50 + 51 + 52 + ... + 5100 Không phải là số chính phương vì số chính phương không thể có tận cùng là 2.
P = 1 + 50 + 51 + 52 + 53 + ... + 5100
TA CÓ :
P = 1 + 1 + 5.( 1 + 5 + 52 + ... + 599)
Vì 1 + 5 + 52 + ... + 599 là tổng của 100 số lẻ nên tổng đó là số chẵn
⇒ 5.(1 + 5 + 52+ ... + 599) = ..0‾..0 (tích của 5 với bất cứ thừa số chẵn nào cùng có tận cùng là 0)
Vậy P = 2 + ..0‾..0
P = ...2‾...2
Kết luận P = 1 + 50 + 51 + 52 + ... + 5100 Không phải là số chính phương vì số chính phương không thể có tận cùng là 2.