Bài 1 Viết tập hợp sau bằng cách liệt kê
a) A={x thuộc N | x:2 và 20 <x<40}
b) Tính số phần tử B = { 10;11.....;123}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+4n=n\left(n+4\right)\)
Để n(n+4) là số nguyên tố thì (n+4;n): (4;1);(1;4);(-1;-4);(-4;-1)
Nếu n+4 = 4; n=1 => n =0 hoặc n=1
Nếu n+4=1; n=4 => n=-3 hoặc n=4
Nếu n+4 = -1;n=-4 => n = 3 hoặc n=-4
Nếu n+4= -4; n= -1 => n=-8; n=-1
\(n^2+4n=n\left(n+4\right)\)
Để \(n^2+4n\) là số nguyên tố thì \(\left[{}\begin{matrix}n=1\\n+4=1\end{matrix}\right.\).
Với \(n=1\): \(n^2+4n=5\) (thỏa mãn).
Với \(n+4=1\Leftrightarrow n=-3\) (không thỏa mãn).
Để chia hết cho 2 thì C phải là 1 số chẵn
Để chia hết cho 5 thì C phải là 0 hoặc 5
=> C = 0
Nên ta có A1B800 chia hết cho 3 và 9
để chia hết cho 3 và 9 thì A+1+B+8+0+0 phải có kết quả là số chia hết cho 9
=> A+B = 9
Như đề bài A< B
=> Có A và B = 1 và 8, 2 và 7 ,3 và 6 , 4 và 5
Lời giải:
a.
$3n-1\vdots n-2$
$\Rightarrow 3(n-2)+5\vdots n-2$
$\Rightarrow 5\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{3; 1; 7; -3\right\}$
b.
$3n+1\vdots 2n-1$
$\Rightarrow 2(3n+1)\vdots 2n-1$
$\Rightarrow 6n+2\vdots 2n-1$
$\Rightarrow 3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in\left\{1; 0; 3; -2\right\}$
a) (3n -1) chia hết (n-2)
⇒3(n-2)+5 chia hết (n-2)
⇒ 5 chia hết (n-2) vì 3(n-2) chia hết (n-2)
⇒(n-2) ϵ Ư(5)
Vậy n-2 =1 hoặc n-2 = -1 hoặc n-2 =5 hoặc n-2 = -5
Vậy n = 3 hoặc n=1 hoặc n=7 hoặc n= -3
b) (3n+1) chia hết (2n-1)
⇒(2n -1 +n +2) chia hết (2n-1)
⇒ (n+2) chia hết (2n-1)
⇒(2n +4) chia hết (2n-1)
⇒(2n -1 +5) chia hết (2n-1)
⇒ 5 chia hết (2n-1)
⇒(2n-1) ϵ Ư (5)
Vậy n = {-1; 0; 3; -2}
Lời giải:
Giả sử có $n$ số tổ chia được sao cho số nữ và số nam trong tổ là như nhau.
Khi đó $n$ là ước chung của $24,18$.
$\Rightarrow n\in\left\{1; 2; 3; 6\right\}$
$\Rightarrow$ có $4$ cách chia tổ
Để số học sinh mỗi tổ ít nhất thì $n$ phải nhiều nhất, tức là $n=6$
Vậy chia thành 6 nhóm thì số học sinh ở mỗi tổ là ít nhất.
Khi đó, mỗi tổ có: $18:6=3$ (hs nam) và $24:6=4$ (hs nữ)
Gọi d\inƯCLN\left(2n+1;6n+5\right)d∈ƯCLN(2n+1;6n+5) nên ta có :
2n+1⋮d2n+1⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow3\left(2n+1\right)⋮d⇔3(2n+1)⋮d và 6n+5⋮d6n+5⋮d
\Leftrightarrow6n+3⋮d⇔6n+3⋮d và 6n+5⋮d6n+5⋮d
\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d⇒(6n+5)−(6n+3)⋮d
\Rightarrow2⋮d\Rightarrow d=2⇒2⋮d⇒d=2
Mà 2n+1;6n+52n+1;6n+5 là các số lẻ nên không thể có ước là 2
\Rightarrow d=1⇒d=1
\Rightarrow2n+1⇒2n+1 và 6n+56n+5 là nguyên tố cùng nhau
Gọi a là số tổ cần tìm
Vì 20 : a ; 16 : a và a là lớn nhất nên a = ƯCLN(20,16) ( dấu " : " ở dòng này là dấu chia hết nhe bạn)
20 =22.5
16=24
ƯCLN(20,16)= 22 = 4
=> Có thể chia thành nhiều nhất 4 tổ
Số học sinh nam ở mỗi tổ :
20 : 4 = 5 (hs)
Số hs nữ ở mỗi tổ :
16: 4 = 4 (hs)
Vậy số hs nam là 5 hs , số hs nữ là 4 hs
Chúc bạn học giỏi *-*
Giúp với ạ
a) A = {22; 24;26;28;30;32;34;36;38}
b) Số phần tử của B là: 114