\(\left(\frac{\sqrt{5}}{\sqrt{2}+1}+\frac{14}{2\sqrt{2}-1}-\frac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
mình cần gấp mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(\frac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\frac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
\(=\frac{\sqrt{2}.\sqrt{5}.\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-\frac{6}{\sqrt{10}-2}+\sqrt{63+12\sqrt{7}+4}\)
\(=\sqrt{2}.\sqrt{5}-\frac{6.\left(\sqrt{10}+2\right)}{10-4}+\sqrt{\left(3\sqrt{7}+2\right)^2}\)
\(=\sqrt{10}-\sqrt{10}-2+3\sqrt{7}+2\)
\(=3\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{9+6\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}=\left(\sqrt{5}-2\right)-\left(3+\sqrt{5}\right)=-5\)
Trả lời:
\(\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{5-4\sqrt{5}+4}-\sqrt{9+6\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(=\sqrt{5}-2-3-\sqrt{5}\)
\(=-5\)
Áp dụng Bất đẳng thức Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\ge\frac{\left(a+b\right)^2}{a+2b+b+2a}=\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
\(2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge2\left(\frac{\left(a+b\right)^2}{2a+b+2b+a}\right)=2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\left(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\right)+2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge\frac{\left(a+b\right)^2}{3\left(a+b\right)}+2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Vậy ta có ngay điều phải chứng minh
Trả lời:
\(A=\sqrt{3}-\frac{\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)
\(A=\sqrt{3}+\frac{\sqrt{6}}{\sqrt{2}-1}-\frac{2\sqrt{2}+2}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\frac{\sqrt{6}.\left(\sqrt{2}+1\right)}{2-1}-\frac{2.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(A=\sqrt{3}+\sqrt{6}.\left(\sqrt{2}+1\right)-2\)
\(A=\sqrt{3}+\sqrt{12}+\sqrt{6}-2\)
\(A=\sqrt{3}+2\sqrt{3}+\sqrt{6}-2\)
\(A=3\sqrt{3}+\sqrt{6}-2\)
a,Với \(m=2\)thì phương trình trên tương đương với :
\(x^2-4x-4+12-5=0\)
\(< =>x^2-4x+3=0\)
Ta dễ dàng nhận thấy : \(1-4+3=0\)
Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)
b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)
\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)
\(< =>16+4m^2-24m+20\)
\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)
c,Theo bất đẳng thức AM-GM thì :
\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)
Nên ta được : \(P\ge2x_1x_2\)
Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)
\(< =>P\ge-2m^2+12m-10\)
\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)
\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)
Đẳng thức xảy ra khi và chỉ khi \(m=0\)
Vậy \(Min_P=-28\)khi \(m=0\)
x2 - 4x - m2 + 6m - 5 = 0
Với m = 2 ta có :
x2 - 4x - m2 + 6m - 5 = 0
<=> x2 - 4x - 22 + 2.6 - 5 = 0
<=> x2 - 4x - 4 + 12 - 5 = 0
<=> x2 - 4x + 3 = 0
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)
Ta có : \(2x^2+\left(2m-1\right)x+m-1=0\left(a=2;b=2m+1;c=m-1\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-2m-1}{2};x_1x_2=\frac{m-1}{2}\)
Theo bài ra ta có : \(2x_1-3x_2=1\)Ta có hệ sau :
\(\hept{\begin{cases}2x_1-3x_2=1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}2x_1-3x_2=1\\3x_1+3x_2=\frac{-2m-1}{2}\end{cases}}}\)
\(\hept{\begin{cases}5x_1=-2m+1\\x_1+x_2=\frac{-2m-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-2m+1}{5}\left(1\right)\\x_1+x_2=\frac{-2m-1}{2}\left(2\right)\end{cases}}\)
Thay \(x_1\)vào pt 2 ta có : \(\frac{-2m+1}{5}+x_2=\frac{-2m-1}{2}\)
\(\Leftrightarrow\frac{-4m+2}{10}+\frac{10x_2}{10}=\frac{-10m-5}{10}\)Khử mẫu ta có pt mới : \(-4m+2+10x_2=-10m-5\)
\(10x_2=-6m-7\Leftrightarrow x_2=\frac{-6m-7}{10}\)
Vì \(x_1x_2=\frac{m-1}{2}\)nên \(\frac{-6m-7}{10}.\frac{-2m+1}{5}=\frac{12m^2+8m-7}{50}\)
Đặt \(\frac{12m^2+8m-7}{50}=\frac{m-1}{2}\Leftrightarrow\frac{12m^2+8m-7}{50}=\frac{25m-25}{50}\)
Khử mẫu ta ddc : \(12m^2+8m-7-25m+25=0\)
\(\Leftrightarrow12m^2-17m+18=0\) Ta có : \(\Delta=\left(-17\right)^2-4.12.18=289-864< 0\)
Sai đâu tớ chịu :v
pt đầu
<=> \(\left(x+1\right)^3-y^3+3\left(x+1\right)-3y=0\)
<=> \(\left(x+1-y\right)\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)=0\)
<=> \(x+1-y=0\)
vì \(\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)>0,\forall x;y\)
<=> y = x + 1
Thế vào phương trinhd dưới rồi giải
\(x^2+\left(x+1\right)^2-3x-1=0\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Với x = 0 ta suy ra y = 1
Với x = 1/2 suy ra y = 3/2
Kết luận:...