K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

Gọi tuổi của B là x ( x ∈ N* )

=> Tuổi của A = 3x 

Sau 10 năm nữa tuổi của A chỉ còn gấp 2 lần tuổi B

=> Ta có phương trình : 3x + 10 = 2( x + 10 )

<=> 3x + 10 = 2x + 20

<=> 3x - 2x = 20 - 10

<=> x = 10 ( tm )

Vậy năm nay A 30 tuổi ; B 10 tuổi

2 tháng 3 2021

\(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+5}{6}+1\)

\(\Leftrightarrow\frac{18x-6-10x+20}{30}=\frac{5x+25+30}{30}\)

\(\Rightarrow8x+14=5x+55\Leftrightarrow3x=41\Leftrightarrow x=\frac{41}{3}\)

Vậy tập nghiệm của phương trình là S = { 41/3 } 

2 tháng 3 2021

Ta có : 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)

\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))

\(=6\left(x+\frac{1}{x}\right)\)

Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)

\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))

\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)

\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)

Do đó \(x^3+\frac{1}{x^3}=6.3=18\)

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)

Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)

\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)

\(\Rightarrow x^5+\frac{1}{x^5}=125\)

Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)

2 tháng 3 2021

x2 - 12x - 13 = 0

<=> x2 - 13x + x - 13 = 0

<=> ( x2 - 13x ) + ( x - 13 ) = 0

<=> x( x - 13 ) + ( x - 13 ) = 0

<=> ( x - 13 )( x + 1 ) = 0

<=> x - 13 = 0 hoặc x + 1 = 0

<=> x = 13 hoặc x = -1

Vậy phương trình có tập nghiệm S = { 13 ; -1 }

2 tháng 3 2021

Trả lời:

x2 - 12x - 13 = 0

<=> x2 + x - 13x - 13= 0

<=> ( x2 + x ) - ( 13x - 13 ) = 0

<=> x( x + 1 ) - 13( x + 1 ) = 0

<=> ( x - 13 ) ( x + 1 ) = 0 

<=> x - 13 = 0 hoặc x + 1 = 0

<=>    x = 13    hoặc    x = -1

Vậy S = { 13; -1 }

2 tháng 3 2021

( m2 - 1 )x2 + ( m - 1 )x - 4m2 + m = 0

Để phương trình có nghiệm x = 2

thì ( m2 - 1 ).4 + ( m - 1 ).2 - 4m2 + m = 0

<=> 4m2 - 4 + 2m - 2 - 4m2 + m = 0

<=> 3m - 6 = 0

<=> m = 2

Vậy với m = 2 thì phương trình nhận x = 2 làm nghiệm

2 tháng 3 2021

Vì phương trình có nghiệm là 2 

Nên thay x = 2 vào phương trình trên ta được :

\(4m^2-4+2m-2-4m^2+m=0\)

\(\Leftrightarrow-6+3m=0\Leftrightarrow m=2\)

Vậy với x = 2 thì m = 2

2 tháng 3 2021

Gọi x vận tốc Minh đi bộ => thời gian đi về của Minh: 2AB/x

y vận tốc của dòng nước (y<x) => thời gian đi về của Bình: AB/(x-y) + AB/(x+y)

Bài toán quay về so sánh: 2/x và 1/(x-y)+1/(x+y)

lập hiệu ta có: 2/x-1/(x-y)-1/(x+y) = 1/x-1/(x-y)+1/x-1/(x+y) = \(\frac{y}{x}\left(\frac{1}{x+y}-\frac{1}{x-y}\right)\)< 0

Vậy Minh đi về sớm hơn.

2 tháng 3 2021

minh về sớm hơn

2 tháng 3 2021

A B C M N P H F E 1

a) Xét \(\Delta ABN\)và \(\Delta ACP\)có:

\(\widehat{A}\)chung

\(\widehat{BNA}=\widehat{CPA}\left(=90^0\right)\)

\(\Rightarrow\Delta ABN-\Delta ACP\left(g.g\right)\)(điều phải chứng minh)

\(\Rightarrow\frac{AB}{AC}=\frac{AN}{AP}\)(2 cặp cạnh tỉ lệ tương ứng)

Xét \(\Delta ANP\)và \(\Delta ABC\)có :

\(\frac{AN}{AP}=\frac{AB}{AC}\)(chứng minh trên)

\(\widehat{A}\)chung.

\(\Rightarrow\Delta ANP-\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\frac{AN}{AB}=\frac{NP}{BC}\)(2 cặp cạnh tỉ lệ tương ứng) (điều phải chứng minh)

b) Xét \(\Delta PAH\)và \(\Delta MAB\)có:

\(\widehat{APH}=\widehat{AMB}\left(=90^0\right)\)

\(\widehat{A_1}\)chung.

\(\Rightarrow\Delta PAH-\Delta MAB\left(g.g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AP}{AM}\)(2 cặp góc tỉ lệ tương ứng) 

\(\Rightarrow AM.AH=AP.AB\)(điều phải chứng minh)

2 tháng 3 2021

(tiếp)  \(\frac{AH}{AB}=\frac{AP}{AM}\)\(\Rightarrow\frac{AH}{AP}=\frac{AB}{AM}\)(tính chất của tỉ lệ thức)

Xét \(\Delta HAB\)và \(\Delta PAM\)có:

\(\widehat{A_1}\)chung

\(\frac{AH}{AP}=\frac{AB}{AM}\)(chứng minh trên)

\(\Rightarrow\Delta HAB-\Delta PAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{APM}\)(cặp góc bằng nhau) (điều phải chứng minh)

c) Vì \(BN\perp AC\)(giả thiết) \(\Rightarrow\Delta NAB\)vuông tại N

Xét \(\Delta NAB\)vuông tại N có \(\widehat{NAB}=60^0\)(vì \(\widehat{CAB}=60^0\))

Do đó \(AN=\frac{AB}{2}\Rightarrow\frac{AN}{AB}=\frac{1}{2}\)

Vì \(\Delta ANP-\Delta ABC\)(theo câu a))

\(\Rightarrow\frac{S_{ANP}}{S_{ABC}}=\left(\frac{AN}{AB}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)(định lí tỉ số 2 tam giác đồng dạng)

Vậy \(\frac{S_{ANP}}{S_{ABC}}=\frac{1}{4}\)