\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) - \(\left(\sqrt{x}+\sqrt{y}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(x\ge0\)
\(K=1+\frac{1+\sqrt{x}}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x-2\sqrt{x}}\)
\(\Leftrightarrow K=1+\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow K=1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow K=1+\frac{x+\sqrt{x}-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(K=1+\frac{x-2\sqrt{x}}{x-2\sqrt{x}}=1+1=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đk: \(x\ge2\)
Đặt: \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{cases}\left(a>0,b\ge0\right)}\)
\(\Rightarrow\sqrt{x-1}+\sqrt{x-2}=3\Leftrightarrow a+b=3\)
và \(a^2-b^2=1\)
Ta lập được hệ phương trình:
\(\hept{\begin{cases}a^2-b^2=1\\a+b=3\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a-b\right)=1\\a+b=3\end{cases}}}\Rightarrow\hept{\begin{cases}a-b=\frac{1}{3}\\a+b=3\end{cases}}\)
Tới đây thì chúng ta chỉ cần giải hệ ở trên tìm dược a,b rồi thế vào là được
![](https://rs.olm.vn/images/avt/0.png?1311)
Ap dung cong thuc \(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)
ta co \(E=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2005}-\frac{1}{2006}=2004+\frac{1}{2}-\frac{1}{2006}\)
Ta có:
\(E=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{\left(-4\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2005^2}+\frac{1}{\left(-2006\right)^2}}\)
DO: \(1+2+\left(-3\right)=0;1+3+\left(-4\right)=0;...;1+2005+\left(-2006\right)=0\)
=> TA ĐƯỢC: \(E=\sqrt{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}\right)^2}+\sqrt{\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{-4}\right)^2}+...+\sqrt{\left(\frac{1}{1}+\frac{1}{2005}+\frac{1}{-2006}\right)^2}\)
=> \(E=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{1}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1}+\frac{1}{2005}-\frac{1}{2006}\)
=> \(E=\left(\frac{1}{1}+\frac{1}{1}+...+\frac{1}{1}\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\right)\)
DO TRONG E CÓ TẤT CẢ 2004 CĂN THỨC
=> \(E=2004+\frac{1}{2}-\frac{1}{2006}=2004+\frac{501}{1003}=\frac{2010513}{1003}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\frac{4\sqrt{10}}{5}+\frac{4\sqrt{6}}{3}-\frac{16\sqrt{15}}{15}+\frac{2\sqrt{15}}{5}+4-\frac{4\sqrt{10}}{5}+2+\frac{2\sqrt{15}}{3}-\frac{4\sqrt{6}}{3}\)
\(=4\)
Đề có nhầm không bạn ??
ình gửi l;ại câu hỏi bạn giải hộ mình nhé