Cho biểu thức P = \(\frac{\sqrt{x}-1}{\sqrt{x}+9}\) với \(x>0;x\ne4\)
Tìm x để \(\sqrt{P}< \frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x-9\right)+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)\(=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=2.5-4=6\)
Dấu'=' xảy ra khi và chỉ khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=25\Rightarrow\sqrt{x}+3=5\left(do\sqrt{x}+3>0\right)\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Vậy MinA=4 khi và chỉ khi x=4
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow a^2b^2-2abcd+c^2d^2=\left(ab-cd\right)^2\ge0\)(luôn đúng)
Tương tự cho \(\sqrt{\left(a+c\right)^2+\left(b+d\right)}^2,\sqrt{m^2+n^2}\), chứng minh được:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{m^2+n^2}\ge\sqrt{\left(a+c+n\right)^2}+\sqrt{\left(b+d+n\right)^2}\)(BDT Minkowski)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
Ta có :
\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}-y\sqrt{x}-x\sqrt{y}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}-y\sqrt{y}+y\sqrt{x}+x\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)
a) \(-0.8\sqrt{\left(-0.125\right)^2}=-0.8\left|-0.125\right|=-0.8\times0.125=0,1\)
b) \(\sqrt{\left(-2\right)^6}=\sqrt{2^6}=\sqrt{\left(2^3\right)^2}=\left|8\right|=8\)
ĐKXĐ : \(x\ge0\)
\(K=1+\frac{1+\sqrt{x}}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x-2\sqrt{x}}\)
\(\Leftrightarrow K=1+\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow K=1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Leftrightarrow K=1+\frac{x+\sqrt{x}-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(K=1+\frac{x-2\sqrt{x}}{x-2\sqrt{x}}=1+1=2\)
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+9}=\frac{\sqrt{x}+9-10}{\sqrt{x}+9}=1-\frac{10}{\sqrt{x}+9}\)
Để \(\sqrt{p}< \frac{1}{3}\)thì\(P< \frac{1}{9}\)hay\(1-\frac{10}{\sqrt{x}+9}< \frac{1}{9}\Leftrightarrow\frac{8}{9}< \frac{10}{\sqrt{x}+9}\Leftrightarrow\frac{10}{11,25}< \frac{10}{\sqrt{x}+9}\Leftrightarrow\sqrt{x}+9>11,25\)
\(\Leftrightarrow\sqrt{x}>2,25\Leftrightarrow x>\frac{81}{16}\)