Cho tam giác ABC nhọn, các đường cao BD và CE cắt nhau tại H. Chứng minh rằng BC2 = BH.BD + CH.CE
giải chi tiết giúp mình với, mình cảm ơn nhiềuu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
đến h vẫn còn ôn thi à
\(x^2-4x+y^2-6y+15=2\)
\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)
a,Xét tam giác BDE và tam giác DCE có:
+)chung góc E
+)góc BDE=DCE=90độ
suy ra tam giác BDE đồng dạng tam giác DCE(g-g)
b,Xét tam giác CHD và tam giác DCB có:
+)góc DCH=góc BDC
+)góc DHC=góc BCD
suy ra tam giác CHD đồng dạng tam giác DCB
c,Do BD vuông DE và HC vuông DE
=>BD//HC
=>CK/OB=EK/EO=HK/OD(bn suy ra từ ta-lét)
Mà OB=OD =>CK=HK=>K là trung điểm của CH.
Tỉ số bn dựa vào phần a,b
d,Gọi F là giao điểm của KF và DC(Bây h mình k vt hẳn chữ góc ra nx)
Vì HC//BD nên:
=>HCBD là hình thang
=>BH và DC là 2 đường chéo cắt nhau tại F(*)
Xét tam giác OFD và tam giác KFC,có:
+) ECK= ODF(do BD//CH)
+)DÒF=CKE(Do OD//KC và 2 góc ở vị trí sole trong)
Suy ra tam giác OFD đồng dạng tam giác KFC(g-g)
=>OFD=KFC mà 2 góc ở vị trí đối đỉnh nên
=> DC cắt OK tại F
=>BOK+OKC=180độ(2 góc trong cùng phía)
mà BOK=OKC(do KC//BO) mà 2 góc ở vị trí đồng vị nên
=>CKE+OKC=180 độ
=>O;K;E thẳng hàng mà DC cắt OK tại F nên
=>DC cắt OF tại F(**)
từ (*) và (**) suy ra:
OE;CD;BH thẳng hàng.
Đề: Cho ∆ABC nhọn, 3 đường cao AM, BN, CP đồng quy tại H. a) Chứng minh: ∆ABM ∽ ∆AHP và ∆ABH ∽ ∆AMP; b) Chứng minh: MH.MA = MB.MC; c) Chứng minh: ∆AHB ∽ ∆NHM; d) Chứng minh: ∆MAP ∽ ∆MNH
Giải
a) Xét tam giác \(HBA\)và tam giác \(ABC\):
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\)chung
Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).
b) Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(Định lí Pythagore)
\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).
\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)
\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)
(Bạn tự vẽ hình nhé).
a,Xét 2 tam giác vuông HBA và ABC có:
Góc H= góc A (=90 độ).
AB chung.
=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).
b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:
BC2= AB2 + AC2
Hay BC2 = 62 + 82
= 36 + 64
= 100
=> BC= 10 (cm).
Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)
=> BH/AB = AB/ BC = AH/AC
Hay BH/6 = 6/10 = AH/8
=> BH = 6.6/10 = 3,6 (cm).
AH= 8.6/10 = 4,8 (cm).
Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2>100^2\)
\(\Leftrightarrow a^2+b^2>\frac{100^2}{2}=5000\)
A B C H F E D
gọi F là giao AH và BC
vì tam giác ABC có 2 đường cao CE và BD cắt nhau tại H
=> H là trực tâm tam giác ABC
=>AH vuông góc với BC hay AF vuông góc với BC
Xét tam giác BHF và tam giác BCD có:
góc HBF chung
góc BCD=góc BFH=90 độ(gt)
=>tam giác BHF đồng dạng với tam giác BCD(g-g)
=>BH/BF = BC/BD
=>BH.BD=BF.BC (1)
Xét tam giác CFH và tam giác CEB có:
góc HCF chung
góc CFH=góc CEB=90 độ(gt)
=>tam giác CFH đồng dạng tam giác CEB(g-g)
=>CH/CF = CB/CE
=>CH.CE=CF.CB (2)
Từ (1),(2) => BH.BD+CH.CE=BF.BC+CF.CB
=BC.(CF+BF)=BC.BC=BC2 (đpcm)