P=\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
a)Rút gọn biểu thức P
b)chứng minh rằng:0<=P<=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
=> \(\sqrt{x}=\sqrt{3}-1\)
Thay vào ta tính được:
\(A=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}=\frac{3-2\sqrt{3}}{3}\)
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
Áp dụng định lý py-ta-go vào tam giác AHC vuông tại H có :
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2\)
\(\Leftrightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)
Áp dung hệ thức lượng vào tam giá ABC vuông tại A , ta có :
+) \(AH^2=BH.HC\)
\(\Leftrightarrow9=BH.4\)
\(\Leftrightarrow BH=\frac{9}{4}\left(cm\right)\)
+) \(AB^2=AH.BH\)
\(\Leftrightarrow AB^2=\left(4+\frac{9}{4}\right).\frac{9}{4}=\frac{225}{16}\left(cm\right)\)
+) \(BC=4+\frac{9}{4}=\frac{25}{4}\left(cm\right)\)
bạn vào link tham khảo
Câu hỏi của titanic - Toán lớp 7 - Học toán với OnlineMath
Ta có góc BAC=90 ( góc nội tiếp chắn nửa đường tròn)
Ta có HI, AC vuông góc vs AB
=> HI // AC
=> góc BHI = góc ACB
có tam giác BHI đồng dạng tam giác ACH vì: góc BHI = ACB ( cmt)
BIH= AHC (= 90)
=> BI/AH = BH/AC
=> BI.AC= AH.BH
cmtt CK.AB=AH.CH
=> BI.AC/CK.AB=AH.BH/AH.CH=BH/CH=BH.BC/CH.BC=AB2 /AC2
=> BI/CK= AB3/AC3
b) AIHK là tứ giác nọi tiếp do AIH+AKH=90+90=180
=> góc AKI= AHI
Mà AHI=IBC ( CÙNG PHỤ HAB)
=> AKI=IBC
=> BCKI là tứ giác nội tiếp
Vì A\(\in\)nửa đường tròn tâm O, đường kính BC (gt) => \(\widehat{BAC}=90^o\)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AB^2=BH\cdot BC\Rightarrow AB^4=BH^2\cdot BC^2\)
\(AC^2=CH\cdot BC\Rightarrow AC^4=CH^2\cdot BC^2\)
Lại có \(BH^2=BI\cdot BA,CH^2=CK\cdot CA\Rightarrow\frac{AB^4}{AC^4}=\frac{BI\cdot BA\cdot BC^2}{CK\cdot AC\cdot BC^2}\Rightarrow\frac{AB^3}{AC^3}=\frac{BI}{CK}\)
Chứng minh tứ giác AKHI là hình chữ nhật
Gọi M là giao điểm của AH và IK, N là giao điểm các đường trung trực của IK và BC
Chứng minh được AO vuông góc với IK từ đó suy ra tứ giác AMNO là hình bình hành. Do đó MA=ON=MK
Chứng minh được hai tam giác BON và NMI bằng nhau => NI=NK=NC
Vậy 4 điểm B,I,CK cùng thuộc 1 đường tròn
Bài làm:
a) Tại x = 2 thì giá trị của B là:
\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)
b) Ta có:
\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x-4}{x+5}\)
c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)
Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)
a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))
Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)
b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
ĐKXĐ : \(x\ne-5,x\ne-1\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)
c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))
Để P nguyên => \(\frac{-10}{x+5}\)nguyên
=> -10 chia hết cho x + 5
=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }
x+5 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -4 | -6 | -3 | -7 | 0 | -10 | 5 | -15 |
Các giá trị của x đều tmđk
Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }
Cái đầu là tính à?
Ta có: \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=\left(\sqrt{15}\right)^2+2.2\sqrt{3}.\sqrt{15}+\left(2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=15+12\sqrt{5}+12+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
Sau:
Ta thấy: Điều kiện để \(\sqrt{-\left|x+5\right|}\) có nghĩa là \(-\left|x+5\right|\ge0\left(\forall x\right)\)
Mà \(-\left|x+5\right|\le0\left(\forall x\right)\) nên dấu "=" xảy ra khi: \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy khi x = -5 thì \(\sqrt{-\left|x+5\right|}\) có nghĩa
Làm lại ý 2
\(\sqrt{-\left|x+5\right|}\)có nghĩa
\(\Leftrightarrow-\left|x+5\right|\ge0\)
\(\Leftrightarrow\left|x+5\right|\le0\)
\(\Leftrightarrow x+5\le0\)
\(\Leftrightarrow x\le-5\)
a) đk: \(x\ge0\)
\(P=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
\(P=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(P=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(P=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) Ta thấy \(\hept{\begin{cases}\sqrt{x}\ge0\\x-\sqrt{x}+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\sqrt{x}}{x-\sqrt{x}+1}\ge0\) (1)
Mặt khác ta thấy: \(1-\frac{\sqrt{x}}{x-\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x-\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\ge0\left(\forall x\right)\)
=> \(1\ge\frac{\sqrt{x}}{x-\sqrt{x}+1}\) (2)
Từ (1) và (2) => \(0\le\frac{\sqrt{x}}{x-\sqrt{x}+1}\le0\)
=> \(0\le P\le1\)