The area of triangle ABC is 300 . In triangle ABC, Q is the midpoint of BC, P is a point on AC between C and A such that CP = 3PA . R is a point on side AB such that the area of \(\Delta\)PQR is twice the area of \(\Delta\)RBQ . Find the area of \(\Delta\)PQR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết \(a^2+b^2+c^2+d^2=1\Rightarrow0< a,b,c,d< 1\)
Ta có: \(2\left(1-a\right)\left(1-b\right)=2-2\left(a+b\right)+2ab=a^2+b^2+c^2+d^2+1\)\(-2a-2b+2ab-2cd+2cd=\left(a+b-1\right)^2+\left(c-d\right)^2+2cd\ge2cd\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge cd\)(*)
Tương tự ta có: \(\left(1-c\right)\left(1-d\right)\ge ab\)(**)
Nhân theo từng vế cùng chiều của hai BĐT (*) và (**), ta được: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\ge abcd\)
Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{2}\)
Bài làm:
Ta có: \(a+b+c=1\)
\(\Leftrightarrow\left(a+b+c\right)^2=1\)
\(\Leftrightarrow1=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) (1)
Xét BĐT phụ sau: \(a^2+b^2+c^2\ge ab+bc+ca\)
Ta có: \(a^2+b^2\ge2ab\) ; \(b^2+c^2\ge2bc\) ; \(c^2+a^2\ge2ca\) (Cauchy)
=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=> \(a^2+b^2+c^2\ge ab+bc+ca\)
Thay vào (1) ta được:
\(1=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)
Cái này gần như là hiển nhiên
Theo bất đẳng thức quen thuộc: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(a+b+c=1\Rightarrow3\left(ab+bc+ca\right)\le1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài làm:
Δ ABC vuông tại A?
Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)
=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)
=> \(AB=4k\)
Từ đây ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)
\(sin^2b+cos^2b=1\)
\(\left(\frac{3}{5}\right)^2+cos^2b=1\)
\(\frac{9}{25}+cos^2b=1\)
\(cos^2b=\frac{16}{25}\)
\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)
\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)
\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)
\(m\left(10-mx\right)+4x=20\)
\(\left(4-m^2\right)x+10m=20\)
\(\left(4-m^2\right)x+10m-20=0\)
\(\left(m+2\right)x-10=0\)
\(m+2=0\)
\(m=-2\)
\(x=0\)
Hok tốt !!!!!!!!!
Dịch thôi chứ ko bt làm:Diện tích tam giác ABC là 300. Trong tam giác ABC, Q là trung điểm BC, P là một điểm trên AC nằm giữa C và A sao cho CP = 3PA. R là một điểm trên cạnh AB sao cho diện tích của \(\Delta\)PQR gấp đôi diện tích của \(\Delta\)RBQ. Tìm diện tích của\(\Delta\) PQR