một xuồng máy đang đi ngược dòng thì gặp một bè đang trôi xuôi. Sau khi gặp 1/2 giờ thì động cơ của xuồng bị hỏng. Trong thời gian máy bị hỏng xuồng bị trôi theo dòng, được 15 phút thì sửa xong máy, xuồng quay lại đuổi theo bè và gặp lại bè ở cách điểm gặp trước một đoạn 2,5km. Tìm vận tốc dòng nước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt A = \(\sqrt{\frac{3+\sqrt{5}}{\sqrt{3}+\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{\sqrt{3}+\sqrt{5}}}\)
A = \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}+\frac{\sqrt{3-\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}\)
A = \(\frac{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}\)
A2 = \(\frac{\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2}{\left(\sqrt{\sqrt{3}+\sqrt{5}}\right)^2}\)
A2 = \(\frac{3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}{\sqrt{3}+\sqrt{5}}\)
A2 = \(\frac{6+2\sqrt{6-5}}{\sqrt{3}+\sqrt{5}}\)
A2 = \(\frac{8\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}\)
A2 = \(\frac{8\left(\sqrt{3}-\sqrt{5}\right)}{3-5}=-4\left(\sqrt{3}-\sqrt{5}\right)\)
A2 = \(4\left(\sqrt{5}-\sqrt{3}\right)\)
=> A = \(2.\sqrt{\sqrt{5}-\sqrt{3}}\)

P/s : làm bừa thôi!
\(\sqrt{x-2018}+\sqrt{x^2+11}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
\(\Leftrightarrow x=y\)
\(\Rightarrow M=x^{11}-x^{2018}\)
Đến đây em tịt !!

ĐK : \(x\ge-2\)
PT <=> \(x^2=4\left(x+2\right)\)
\(x^2=4x+8\)
\(x^2-4x-8=0\)
\(\Delta=\left(-4\right)^2-4.\left(-8\right)=16+32=48>0\)
\(x_1=\frac{4-\sqrt{48}}{2}\left(ktm\right);x_2=\frac{4+\sqrt{48}}{2}\left(tm\right)\)
x2 = 4(x+2)
x2=4x+8
x2-4x-8=0
x2-4x+4-12=0
(x-2)2=12
x-2=\(\sqrt{12}\)or x-2=\(-\sqrt{12}\)
Xong bạn tính x nha

Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) ( ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))
\(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)
\(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)

:V
Câu đầu cho x > 0 thì dễ hơn ......
Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)
Đẳng thức xảy ra tại x=1
\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1
Làm 2 cái thôi còn lại tương tự bạn nhé :)
+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)
\(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)
Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có:
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)
\(\Rightarrow\)\(D\ge3-2=1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+2=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow x=\pm1\)
Vậy \(S=\left\{\pm1\right\}\)

a, Ta có : \(\sqrt{120}^2=120\)
\(\left(5\sqrt{7}\right)^2=25.7=175\)
\(\Rightarrow\sqrt{120}< 5\sqrt{7}\)
b, Ta có : \(\left(\frac{1}{6}\sqrt{5}\right)^2=\frac{1}{36}.5=\frac{5}{36}\)
\(\left(\frac{1}{5}\sqrt{6}\right)^2=\frac{1}{25}.6=\frac{6}{25}\)
\(\Rightarrow\frac{5}{36}< \frac{6}{25}\)

a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)
\(=-\frac{2}{3}\sqrt{15}\)
b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)
\(=\frac{9}{2}\sqrt{7}\)
c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)
\(=9\sqrt{3}\)

\(\sin\alpha=\frac{8}{17}\Rightarrow sin^2\alpha=\frac{64}{289}\Rightarrow cos^2\alpha=1-sin^2\alpha=1-\frac{64}{289}=\frac{225}{289}\)
\(\Rightarrow cos\alpha=\frac{15}{17}\)
từ đó tính ra \(tan\alpha;cot\alpha\)
Ta có: \(\sin^2\alpha+\tan^2\alpha=1\)
\(\Leftrightarrow\frac{64}{289}+\tan^2\alpha=1\)
\(\Leftrightarrow\tan^2\alpha=\frac{225}{289}\)
\(\Rightarrow\tan\alpha=\frac{15}{17}\)
Đến đây thì dễ rồi:
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{15}{8}\) ; \(\cot\alpha=\frac{8}{15}\)