P=(√x - x+2/√x+1):(√x/√x-1 - √x-4/1-x) a,rút gọn P b,tìm gt của x thỏa mãn P<0 c,tìm gtnn của P Giúp mik vs mik cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\sqrt{\frac{3+\sqrt{5}}{\sqrt{3}+\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{\sqrt{3}+\sqrt{5}}}\)
A = \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}+\frac{\sqrt{3-\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}\)
A = \(\frac{\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}}{\sqrt{\sqrt{3}+\sqrt{5}}}\)
A2 = \(\frac{\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2}{\left(\sqrt{\sqrt{3}+\sqrt{5}}\right)^2}\)
A2 = \(\frac{3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}{\sqrt{3}+\sqrt{5}}\)
A2 = \(\frac{6+2\sqrt{6-5}}{\sqrt{3}+\sqrt{5}}\)
A2 = \(\frac{8\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}\)
A2 = \(\frac{8\left(\sqrt{3}-\sqrt{5}\right)}{3-5}=-4\left(\sqrt{3}-\sqrt{5}\right)\)
A2 = \(4\left(\sqrt{5}-\sqrt{3}\right)\)
=> A = \(2.\sqrt{\sqrt{5}-\sqrt{3}}\)
P/s : làm bừa thôi!
\(\sqrt{x-2018}+\sqrt{x^2+11}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
\(\Leftrightarrow x=y\)
\(\Rightarrow M=x^{11}-x^{2018}\)
Đến đây em tịt !!
ĐK : \(x\ge-2\)
PT <=> \(x^2=4\left(x+2\right)\)
\(x^2=4x+8\)
\(x^2-4x-8=0\)
\(\Delta=\left(-4\right)^2-4.\left(-8\right)=16+32=48>0\)
\(x_1=\frac{4-\sqrt{48}}{2}\left(ktm\right);x_2=\frac{4+\sqrt{48}}{2}\left(tm\right)\)
x2 = 4(x+2)
x2=4x+8
x2-4x-8=0
x2-4x+4-12=0
(x-2)2=12
x-2=\(\sqrt{12}\)or x-2=\(-\sqrt{12}\)
Xong bạn tính x nha
Ta có: \(A=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right).\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\) ( ĐK: \(x\ne0,\)\(x\ne9,\)\(x\ge3\))
\(\Leftrightarrow A=\frac{\sqrt{x}.\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\sqrt{x}-9}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3\left(\sqrt{x}-3\right)}{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)}.\frac{2\sqrt{x}+4}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{3.\left(2\sqrt{x}+4\right)}{\left(9-x\right).\sqrt{x}}\)
\(\Leftrightarrow A=\frac{6\sqrt{x}+12}{9\sqrt{x}-x}\)
:V
Câu đầu cho x > 0 thì dễ hơn ......
Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)
Đẳng thức xảy ra tại x=1
\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1
Làm 2 cái thôi còn lại tương tự bạn nhé :)
+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)
\(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)
Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có:
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)
\(\Rightarrow\)\(D\ge3-2=1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+2=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow x=\pm1\)
Vậy \(S=\left\{\pm1\right\}\)
a, Ta có : \(\sqrt{120}^2=120\)
\(\left(5\sqrt{7}\right)^2=25.7=175\)
\(\Rightarrow\sqrt{120}< 5\sqrt{7}\)
b, Ta có : \(\left(\frac{1}{6}\sqrt{5}\right)^2=\frac{1}{36}.5=\frac{5}{36}\)
\(\left(\frac{1}{5}\sqrt{6}\right)^2=\frac{1}{25}.6=\frac{6}{25}\)
\(\Rightarrow\frac{5}{36}< \frac{6}{25}\)
a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)
\(=-\frac{2}{3}\sqrt{15}\)
b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)
\(=\frac{9}{2}\sqrt{7}\)
c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)
\(=9\sqrt{3}\)
\(\sin\alpha=\frac{8}{17}\Rightarrow sin^2\alpha=\frac{64}{289}\Rightarrow cos^2\alpha=1-sin^2\alpha=1-\frac{64}{289}=\frac{225}{289}\)
\(\Rightarrow cos\alpha=\frac{15}{17}\)
từ đó tính ra \(tan\alpha;cot\alpha\)
Ta có: \(\sin^2\alpha+\tan^2\alpha=1\)
\(\Leftrightarrow\frac{64}{289}+\tan^2\alpha=1\)
\(\Leftrightarrow\tan^2\alpha=\frac{225}{289}\)
\(\Rightarrow\tan\alpha=\frac{15}{17}\)
Đến đây thì dễ rồi:
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{15}{8}\) ; \(\cot\alpha=\frac{8}{15}\)
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)