Em hãy nêu lại Định Lí Pytago
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C O D I E
Xét tg ABO và tg ACO có
AO chung
AB=AC (gt)
OB=OC=R
=> tg ABO = tg ACO (c.c.c)
\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\Rightarrow AC\perp OC\) => AC là tiếp tuyến với (O)
b/
Xét tg vuông EOI và tg vuông COI có
OE=OC=R; OI chung => tg EOI = tg COI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg vuông EDI và tg vuông CDI có
DI chung
tg EOI = tg COI (cmt) => IE=IC
=> tg EDI = tg CDI (hai tg vuông có 2 cạnh góc vuông bằng nhau)
Xét tg DEO và tg DCO có
DO chung
OE=OC=R
tg EDI = tg CDI (cmt) => DE=DC
=> tg DEO = tg DCO (c.c.c)
\(\Rightarrow\widehat{DEO}=\widehat{DCO}=90^o\Rightarrow DE\perp OE\) => DE là tiếp tuyến với (O, R)
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.
a) Đồ thị:
b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C
Thay x = 0 vào hàm số y = x - 1 ta có:
y = 0 - 1 = - 1
⇒ B(0; -1)
Thay y = 0 vào hàm số y = x - 1 ta có:
x - 1 = 0
⇔ x = 1
⇒ C(1; 0)
c) Gọi (t): y = ax + b (a 0)
Do (t) // (d) nên a = -2
⇒ (t): y = -2x + b
Thay y = -3 vào (d') ta có:
x - 1 = -3
⇔ x = -3 + 1
⇔ x = -2
Thay x = -2; y = -3 vào (t) ta có:
-2.(-2) + b = -3
⇔ 4 + b = -3
⇔ b = -3 - 4
⇔ b = -7
Vậy (t): y = -2x - 7
P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với 0 < \(x\) ≠ 1; 4
P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))
P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): \(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)
P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)
P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)
P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)
b, P = \(\dfrac{1}{4}\)
⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) = \(\dfrac{1}{4}\)
⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)
⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0
\(x\) - 8\(\sqrt{x}\) = 0
\(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0
\(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)
\(x=0\) (loại)
\(x\) = 64
Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)
\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)
\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)
\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)
Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)
Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Theo đề bài, ta có:
\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m
\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)
Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.
a) Xét 2 tam giác ABE và ACF, ta có:
\(\widehat{AEB}=\widehat{ACF}=90^o\) và \(\widehat{A}\) chung
nên \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) \(\Rightarrow AB.AF=AC.AE\) (đpcm)
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó dễ dàng chứng minh \(\Delta AEF~\Delta ABC\left(c.g.c\right)\)
c) Kẻ đường kính AP của (O). Ta có \(\left\{{}\begin{matrix}AB\perp BP\\AB\perp HC\end{matrix}\right.\) \(\Rightarrow\) BP//HC
CMTT, ta có CP//HB, dẫn đến tứ giác BHCP là hình bình hành. Lại có A' là trung điểm BC \(\Rightarrow\) A' cũng là trung điểm HP.
Do đó OA' là đường trung bình của tam giác PAH \(\Rightarrow AH=2A'O\left(đpcm\right)\)
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
Định lý pytago là mối liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.