Cho tam giác ABC vuông tại A, AB=8, \(\widehat{B}=\alpha\),\(\tan\alpha=\frac{5}{12}\).Tính:
a) Cạnh AC
b) Cạnh BC
Mn giúp mk vs ạ mình cần gấp lắm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đăng thức Holder, ta có
\(\Sigma_{cyc} a \sqrt[3]{b^2+c^2} = \Sigma_{cyc} \sqrt[3]{a.a^2.(b^2+c^2)} \le \sqrt[3]{( \Sigma_{cyc} a).(\Sigma_{cyc} a^2).[\Sigma_{cyc} (b^2+c^2)} \le \sqrt[3]{\sqrt{3\Sigma_{cyc} a^2}.(\Sigma_{cyc} a^2).(2\Sigma_{cyc} a^2}) \le 12\)
x2-2x-2(\(\sqrt{2x-3}\) - 1) =0 (x\(\ge\)\(\frac{3}{2}\))
<=> x(x-2) - 2(\(\frac{2x-3-1}{\sqrt{2x-3}+1}\)) =0
<=> (x-2)(x - 2\(\frac{2}{\sqrt{2x-3}+1}\))=0
<=> \(\orbr{\begin{cases}x-2=0\left(1\right)\\x-\frac{4}{\sqrt{2x-3}+1}=0\end{cases}\left(2\right)}\)
(1)=> x=2 (tm)
(2) <=> \(x\sqrt{2x-3}+x=4\)
<=> \(\sqrt{2x^3-3x^2}-2+\left(x-2\right)=0\)
<=> \(\frac{2x^3-3x^2-4}{\sqrt{2x^3-3x^2}+2}\) +(x-2)=0
<=> \(\frac{\left(x-2\right)\left(2x^2+x+2\right)}{\sqrt{2x^3-3x^2}+2}\)+(x-2)=0
<=> (x-2)(\(\frac{2x^2+x+2}{\sqrt{2x^3-3x^2}+2}\)+ 1) =0
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\\text{}\text{}\frac{2x^2+x+2}{\sqrt{2x^3-3x^2}+2}\end{cases}}=0\left(3\right)\)mà do x\(\ge\frac{3}{2}\)nên (3)>0
Vậy x=2
ĐKXĐ: x \(\ge\)0; x khác 9 (1)
a) B = \(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
B = \(\frac{-\left(\sqrt{x}+3\right)+\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{-4\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\)
B = \(\frac{4}{3-\sqrt{x}}\)
b) B > A <=> \(\frac{4}{3-\sqrt{x}}>1\) <=> \(\frac{4}{3-\sqrt{x}}-1>0\)
<=> \(\frac{4-3+\sqrt{x}}{3-\sqrt{x}}>0\)
<=> \(\frac{\sqrt{x}+1}{3-\sqrt{x}}>0\)
Do \(\sqrt{x}+1>0\) => \(3-\sqrt{x}>0\) <=> \(\sqrt{x}< 3\)
<=> \(x< 9\)
Kết hợp với đk (1)
=> \(0\le x< 9\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
A B C
a) Vì \(\widehat{B}=\alpha\); \(\tan\alpha=\frac{5}{12}\)
\(\Rightarrow\frac{AC}{AB}=\frac{5}{12}\)
mà \(AB=8\)\(\Rightarrow\frac{AC}{8}=\frac{5}{12}\)
\(\Rightarrow AC=\frac{8.5}{12}=\frac{10}{3}\)
Vậy \(AC=\frac{10}{3}\)
b) Vì \(\Delta ABC\)vuông tại A nên áp dung định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+\left(\frac{10}{3}\right)^2=BC^2\)
\(\Rightarrow BC^2=\frac{676}{9}\)\(\Rightarrow BC=\frac{26}{3}\)
Vậy \(BC=\frac{26}{3}\)