K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

Ta có: \(5\sqrt{x-1}-\sqrt{36x-36}+\sqrt{9x-9}=\sqrt{8x+12}\)   \(\left(ĐK:x\ge1\right)\)

    \(\Leftrightarrow5\sqrt{x-1}-6\sqrt{x-1}+3\sqrt{x-1}=\sqrt{8x+12}\)

    \(\Leftrightarrow2\sqrt{x-1}=\sqrt{8x+12}\)

    \(\Leftrightarrow\left(2\sqrt{x-1}\right)^2=\left(\sqrt{8x+12}\right)^2\)

    \(\Leftrightarrow4.\left(x-1\right)=8x+12\)

    \(\Leftrightarrow4x-4=8x+12\)

    \(\Leftrightarrow-4x=16\)

    \(\Leftrightarrow x=-4\left(L\right)\)

Vậy \(S=\varnothing\)

12 tháng 9 2020

\(5\sqrt{x-1}-\sqrt{36\left(x-1\right)}+\sqrt{9\left(x-1\right)}=\sqrt{4\left(2x+3\right)}\) 

\(5\sqrt{x-1}-6\sqrt{x-1}+3\sqrt{x-1}=2\sqrt{2x+3}\) 

\(2\sqrt{x-1}=2\sqrt{2x+3}\) 

\(\sqrt{x-1}=\sqrt{2x+3}\) 

\(\hept{\begin{cases}2x+3\ge0\\x-1=2x-3\end{cases}}\) 

\(\hept{\begin{cases}2x\ge-3\\x-2x=-3+1\end{cases}}\) 

\(\hept{\begin{cases}x\ge-\frac{3}{2}\\-x=-2\end{cases}}\) 

\(\hept{\begin{cases}x\ge-\frac{3}{2}\\x=2\end{cases}}\) 

\(\Rightarrow x=2\)

12 tháng 9 2020

Ta có: \(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}-5b\sqrt{81a^3b}\)

    \(=5a.8b.\sqrt{ab}-\sqrt{3}.2\sqrt{3}.ab.\sqrt{ab}-5b.9a\sqrt{ab}\)

    \(=40ab.\sqrt{ab}-6ab.\sqrt{ab}-45ab.\sqrt{ab}\)

    \(=40ab.\sqrt{ab}-6ab.\sqrt{ab}-45ab.\sqrt{ab}\)

    \(=-11ab\sqrt{ab}\)

12 tháng 9 2020

\(5a\sqrt{64ab^3}\) \(-\sqrt{3}\)\(.\sqrt{12a^3b^3}\)\(-5b\sqrt{81a^3b}\)

\(=40ab\sqrt{ab}\)\(-6ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=\left(40ab-6ab-45ab\right)\sqrt{ab}\)

\(=-11ab\sqrt{ab}\)

sao tôi lại thấy tên tôi nhỉ ?

12 tháng 9 2020

Machi!Rồi bạn trong đội tuyển văn không?

12 tháng 9 2020

a)\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{3}{2}\sqrt{6}+2\frac{\sqrt{6}}{3}-4\frac{\sqrt{6}}{2}\)

\(=\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-\frac{4}{2}\right)=\sqrt{6}.\frac{1}{6}\)

b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}=\left(x.\frac{\sqrt{6x}}{x}+\frac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)

\(=1+\frac{1}{3}+1=2\frac{1}{3}\)

12 tháng 9 2020

a) Ta có: \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)

         \(=5\sqrt{5}-4.3\sqrt{5}+3.2\sqrt{5}-4\sqrt{5}\)

         \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)

         \(=-5\sqrt{5}\)

         \(\approx-11,18033989\)

12 tháng 9 2020

b, \(5\sqrt{a}-4b\sqrt{25a^2}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-20ab+5a.4\sqrt{a}b-6\sqrt{a}\)

\(=-\sqrt{a}-20ab+20a\sqrt{a}b\)

12 tháng 9 2020

a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\)       \(\left(ĐK:x\ge2\right)\)

        \(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)

        \(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)

        \(\Leftrightarrow4.\sqrt{x-2}=20\)

        \(\Leftrightarrow\sqrt{x-2}=5\)

        \(\Leftrightarrow x-2=25\)

        \(\Leftrightarrow x=27\left(TM\right)\)

Vậy \(S=\left\{27\right\}\)

12 tháng 9 2020

a, PT <=> \(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}\sqrt{x-2}=20\)

\(\left(2+5-3\right)\sqrt{x-2}=20\)

\(4\sqrt{x-2}=20\Leftrightarrow\sqrt{x-2}=5\Leftrightarrow x-2=25\Leftrightarrow x=27\)

12 tháng 9 2020

Ta có: \(\sin18^0\approx0,3090169944\)

           \(\frac{\sqrt{5}-1}{4}\approx0,3090169944\)

 \(\Rightarrow\)\(\sin18^0=\frac{\sqrt{5}-1}{4}\)

12 tháng 9 2020

Nhớ rằng: Số chính phương=Bình phương của 1 số ---> Chỉ có thể chia 4 dư 0 hoặc dư 1

Chứng minh: Xét bình phương số lẻ: \(\left(2n+1\right)^2=4\left(n^2+n\right)+1\)---> Chia 4 dư 1

Xét bình phương số chẵn: \(\left(2n\right)^2=4n^2⋮4\)

Giờ ta xét tổng 4 số chính phương lẻ:

\(\left(2a+1\right)^2+\left(2b+1\right)^2+\left(2c+1\right)^2+\left(2d+1\right)^2\)

\(=4\left(a^2+b^2+c^2+d^2+a+b+c+d+1\right)⋮4\)---> Hoàn toàn có thể là số chính phương