2+8+9=10 đúng không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
vào đây mà xem:https://vnexpress.net/nam-thanh-nien-chung-minh-1-1-3-3987928.html
\(f\left(x\right)=\frac{x+m}{x+1}\)với \(x\in\left[0,1\right]\).
\(f'\left(x\right)=\frac{1-m}{\left(x+1\right)^2}\)
Với \(m=1\): \(f'\left(x\right)=0,\forall x\in\left[0,1\right]\)
\(f\left(x\right)=1\)suy ra \(max_{\left[0,1\right]}\left|f\left(x\right)\right|+min_{\left[0,1\right]}\left|f\left(x\right)\right|=1+1=2\)thỏa mãn.
Với \(m\ne1\): \(f'\left(x\right)\)đơn điệu với \(x\in\left[0,1\right]\).
Ta có: \(f\left(0\right)=m,f\left(1\right)=\frac{m+1}{2}\).
Với \(f\left(0\right)f\left(1\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-1\end{cases}}\)ta có:
\(max_{\left[0,1\right]}\left|f\left(x\right)\right|+min_{\left[0,1\right]}\left|f\left(x\right)\right|=\left|m\right|+\left|\frac{m+1}{2}\right|\)
\(=\left|\frac{3m+1}{2}\right|=2\Leftrightarrow\orbr{\begin{cases}m=1\left(l\right)\\m=-\frac{5}{3}\left(tm\right)\end{cases}}\)
Với \(f\left(0\right)f\left(1\right)< 0\Leftrightarrow-1< m< 0\).
Khi đó \(min_{\left[0,1\right]}\left|f\left(x\right)\right|=0,max_{\left[0,1\right]}\left|f\left(x\right)\right|=max\left\{\left|f\left(0\right)\right|,\left|f\left(1\right)\right|\right\}\).
\(max_{\left[0,1\right]}\left|f\left(x\right)\right|+min_{\left[0,1\right]}\left|f\left(x\right)\right|=max\left\{\left|f\left(0\right)\right|,\left|f\left(1\right)\right|\right\}\)
\(=max\left\{\left|m\right|,\left|\frac{m+1}{2}\right|\right\}=2\)
\(\Rightarrow\orbr{\begin{cases}\left|m\right|=2\\\left|\frac{m+1}{2}\right|=2\end{cases}}\)
Giải ra các giá trị của \(m\)ta thấy đều không thỏa mãn.
Vậy \(m\in\left\{1,-\frac{5}{3}\right\}\).
Chọn B.
đúng đấy do bạn ngu
không đúng đâu