Tính nhanh
178 x 270 + 156/179 x 270 - 114
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a:
b: Phương trình hoành độ giao điểm là:
\(x^2=-2x+3\)
=>\(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Khi x=-3 thì \(y=\left(-3\right)^2=9\)
Khi x=1 thì \(y=1^2=1\)
Vậy: (P) cắt (d) tại A(-3;9); B(1;1)
Câu 4:
a:
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=\dfrac{1}{2}x+1\)
=>\(x^2=x+2\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Khi x=2 thì \(y=\dfrac{1}{2}\cdot2^2=2\)
Khi x=-1 thì \(y=\dfrac{1}{2}\cdot\left(-1\right)+1=1-\dfrac{1}{2}=\dfrac{1}{2}\)
vậy: \(A\left(2;2\right);B\left(-1;\dfrac{1}{2}\right)\)
c: Thay x=1 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot1^2=\dfrac{1}{2}\)
vậy: C(1;0,5)
A(2;2); B(-1;0,5); C(1;0,5)
\(AB=\sqrt{\left(-1-2\right)^2+\left(0,5-2\right)^2}=\dfrac{3\sqrt{5}}{2}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(0,5-2\right)^2}=\dfrac{\sqrt{13}}{2}\)
\(BC=\sqrt{\left(1+1\right)^2+\left(0,5-0,5\right)^2}=2\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{\dfrac{45}{4}+\dfrac{13}{4}-4}{2\cdot\dfrac{3\sqrt{5}}{2}\cdot\dfrac{\sqrt{13}}{2}}=\dfrac{7}{\sqrt{65}}\)
=>\(sinBAC=\sqrt{1-\left(\dfrac{7}{\sqrt{65}}\right)^2}=\dfrac{4}{\sqrt{65}}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{\sqrt{65}}\cdot\dfrac{3\sqrt{5}}{2}\cdot\dfrac{\sqrt{13}}{2}=\dfrac{3}{2}\)
Giải
Số cần tìm là:
(80% : 2 - 0,075) x 6 = 1,95
Số cần tìm là 1,95
Câu 2: \(\dfrac{x}{6}+\dfrac{y}{8}=1\)
=>\(\dfrac{4x+3y}{24}=1\)
=>4x+3y=24
=>4x+3y-24=0
Khoảng cách từ O đến đường thẳng 4x+3y-24=0 là:
\(d\left(O;4x+3y-24=0\right)=\dfrac{\left|0\cdot4+0\cdot3-24\right|}{\sqrt{3^2+4^2}}=\dfrac{24}{5}=4,8\)
M(1/2)=0
=>\(a\cdot\left(\dfrac{1}{2}\right)^2+5\cdot\dfrac{1}{2}-3=0\)
=>\(a\cdot\dfrac{1}{4}=\dfrac{1}{2}\)
=>\(a=\dfrac{1}{2}:\dfrac{1}{4}=2\)
Vì M(\(x\)) = a\(x^2\) + 5\(x\) - 3
M(\(\dfrac{1}{2}\)) = 0
a.(\(\dfrac{1}{2}\))2 + 5.(\(\dfrac{1}{2}\)) - 3 = 0
\(\dfrac{1}{4}\)a + \(\dfrac{5}{2}\) - 3 = 0
\(\dfrac{1}{4}\)a - \(\dfrac{1}{2}\) = 0
\(\dfrac{1}{4}\)a = \(\dfrac{1}{2}\)
a = \(\dfrac{1}{2}\) : \(\dfrac{1}{4}\)
a = 2
Vậy để \(x\) = \(\dfrac{1}{2}\) là nghiệm của đa thức thì a = 2
a: Thời gian người đó đi hết quãng đường là:
7h15p-6h30p=45p=0,75(h)
Độ dài quãng đường AB là 0,75x40=30(km)
b: Vận tốc của ô tô là \(40\times\dfrac{2}{3}=\dfrac{80}{3}\left(\dfrac{km}{h}\right)\)
Thời gian ô tô đi hết quãng đường là:
\(30:\dfrac{80}{3}=30\times\dfrac{3}{80}=\dfrac{9}{8}\left(giờ\right)\)
1: \(\dfrac{26}{7}\left[\left(-\dfrac{7}{5}\right)-\dfrac{3}{2}:\dfrac{-5}{-4}+\left(\dfrac{3}{2}\right)^2\right]\)
\(=\dfrac{26}{7}\left(-\dfrac{7}{5}+\dfrac{3}{2}\cdot\dfrac{4}{5}+\dfrac{9}{4}\right)\)
\(=\dfrac{26}{7}\left(-\dfrac{7}{5}+\dfrac{3}{10}+\dfrac{9}{4}\right)\)
\(=\dfrac{26}{7}\cdot\dfrac{-28+6+45}{20}=\dfrac{26}{20}\cdot\dfrac{23}{7}=\dfrac{23}{7}\cdot\dfrac{13}{10}=\dfrac{299}{70}\)
2: \(\dfrac{2}{7}+\dfrac{5}{7}\left(\dfrac{3}{5}-0,25\right)\cdot\left(-2\right)^2+35\%\)
\(=\dfrac{2}{7}+\dfrac{5}{7}\left(\dfrac{3}{5}-\dfrac{1}{4}\right)\cdot4+\dfrac{7}{20}\)
\(=\dfrac{89}{140}+\dfrac{20}{7}\cdot\dfrac{7}{20}\)
\(=\dfrac{89}{140}+1=\dfrac{229}{140}\)
\(\dfrac{178\times270+156}{179\times270-114}\)
\(=\dfrac{270\left(156+22\right)+156}{270\left(156+23\right)-114}\)
\(=\dfrac{270\times156+6096}{270\times156+6096}=1\)