K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2024

Chiều cao của mỗi hình chóp tứ giác đều là:

     30:2=1530:2=15 (m).

Thể tích của lồng đèn quả trám là:

     𝑉=2.(13.20.20.15)=4000V=2.(31.20.20.15)=4000 (cm33).

12 tháng 4 2024

a) Xét hai tam giác vuông: \(\Delta BHK\) và \(\Delta CHI\) có:

\(\widehat{BHK}=\widehat{CHI}\) (đối đỉnh)

\(\Rightarrow\Delta BHK\) ∽ \(\Delta CHI\left(g-g\right)\)

b) Do \(BH\) là tia phân giác của \(\widehat{KBC}\) (gt)

\(\Rightarrow\widehat{KBH}=\widehat{CBH}\)

\(\Rightarrow\widehat{KBH}=\widehat{CBI}\) (1)

Do \(\Delta BHK\) ∽ \(\Delta CHI\left(cmt\right)\)

\(\Rightarrow\widehat{KBH}=\widehat{ICH}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ICH}=\widehat{CBI}\)

Xét hai tam giác vuông: \(\Delta CIB\) và \(\Delta HIC\) có:

\(\widehat{CBI}=\widehat{ICH}\left(cmt\right)\)

\(\Rightarrow\Delta CIB\) ∽ \(\Delta HIC\left(g-g\right)\)

\(\Rightarrow\dfrac{CI}{IH}=\dfrac{IB}{CI}\)

\(\Rightarrow CI^2=IH.IB\)

c) Do \(CI\perp BH\) tại \(I\) (gt)

\(\Rightarrow BI\perp AC\)

\(\Rightarrow BI\) là đường cao của \(\Delta ABC\)

Lại có:

\(CK\perp KB\left(gt\right)\)

\(\Rightarrow CK\perp AB\)

\(\Rightarrow CK\) là đường cao thứ hai của \(\Delta ABC\)

Mà H là giao điểm của \(BI\) và \(CK\) (gt)

\(\Rightarrow AH\) là đường cao thứ ba của \(\Delta ABC\)

\(\Rightarrow AD\perp BC\)

Xét hai tam giác vuông: \(\Delta BKH\) và \(\Delta BDH\) có:

\(BH\) là cạnh chung

\(\widehat{KBH}=\widehat{DBH}\) (do BH là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta BKH=\Delta BDH\) (cạnh huyền - góc nhọn)

\(\Rightarrow BK=BD\) (hai cạnh tương ứng)

\(\Rightarrow B\) nằm trên đường trung trực của DK (3)

Do \(\Delta BKH=\Delta BDH\left(cmt\right)\)

\(\Rightarrow HK=HD\) (hai cạnh tương ứng)

\(\Rightarrow H\) nằm trên đường trung trực của DK (4)

Từ (3) và (4) \(\Rightarrow BH\) là đường trung trực của DK

\(\Rightarrow\widehat{DKH}+\widehat{BHK}=90^0\)

Mà \(\widehat{BHK}=\widehat{CHI}\) (cmt)

\(\Rightarrow\widehat{DKH}+\widehat{CHI}=90^0\) (*)

\(\Delta ABC\) có:

\(BH\) là đường phân giác (cmt)

\(BH\) cũng là đường cao (cmt)

\(\Rightarrow\Delta ABC\) cân tại B

\(\Rightarrow BH\) là đường trung trực của \(\Delta ABC\)

\(\Rightarrow I\) là trung điểm của AC

\(\Rightarrow KI\) là đường trung tuyến của \(\Delta AKC\)

\(\Delta AKC\) vuông tại K có KI là đường trung tuyến ứng với cạnh huyền AC

\(\Rightarrow KI=IC=IA=\dfrac{AC}{2}\)

\(\Rightarrow\Delta IKC\) cân tại \(I\)

\(\Rightarrow\widehat{IKC}=\widehat{ICK}\)

\(\Rightarrow\widehat{IKH}=\widehat{ICH}\)

Mà \(\widehat{ICH}+\widehat{CHI}=90^0\)

\(\Rightarrow\widehat{IKH}+\widehat{CHI}=90^0\) (**)

Từ (*) và (**) \(\Rightarrow\widehat{IKH}=\widehat{DKH}\)

\(\Rightarrow KH\) là tia phân giác của \(\widehat{IKD}\)

Hay \(KC\) là tia phân giác của \(\widehat{IKD}\)

21 tháng 5 2024
 

loading...

a) Vì tam giác 𝐾𝐵𝐶KBC vuông tại 𝐾K suy ra 𝐾𝐵𝐻^=90∘KBH=90

Vì 𝐶𝐼⊥𝐵𝐼CIBI (gt) suy ra 𝐶𝑙𝐻^=90∘ClH=90

Xét △𝐾𝐵𝐻KBH và △𝐶𝐻𝐼CHI có:

𝐾𝐵𝐻^=𝐶𝐼𝐻^=90∘KBH=CIH=90;

𝐵𝐻𝐾^=𝐶𝐻𝐼^BHK=CHI (đối đỉnh)

Suy ra Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼ΔBHKΔCHI (g.g)

b) Ta có Δ𝐵𝐻𝐾∽Δ𝐶𝐻𝐼ΔBHKΔCHI suy ra 𝐻𝐵𝐾^=𝐻𝐶𝐼^HBK=HCI (hai góc tương ứng) 

Mà 𝐵𝐻BH là tia phân giác của 𝐴𝐵𝐶^ABC nên 𝐻𝐵𝐾^=𝐻𝐵𝐶^HBK=HBC.

Do đó 𝐻𝐵𝐶^=𝐻𝐶𝐼^HBC=HCI.

Xét △𝐶𝐼𝐵CIB và △𝐻𝐼𝐶HIC có:

𝐶𝐼𝐵^CIB chung;

𝐼𝐵𝐶^=𝐻𝐶𝐼^IBC=HCI (cmt)

Vậy Δ𝐶𝐼𝐵≈Δ𝐻𝐼𝐶ΔCIBΔHIC (g.g) suy ra 𝐶𝐼𝐻𝐼=𝐼𝐵𝐼𝐶HICI=ICIB

Hay 𝐶𝐼2=𝐻𝐼.𝐼𝐵CI2=HI.IB

c) Xét △𝐴𝐵𝐶ABC có 𝐵𝐼⊥𝐴𝐶BIAC𝐶𝐾⊥𝐴𝐵CKAB𝐵𝐼∩𝐶𝐾={𝐻}BICK={H}

Nên 𝐻H là trực tâm △𝐴𝐵𝐶ABC suy ra 𝐴𝐻⊥𝐵𝐶AHBC tại 𝐷D.

Từ đó ta có △𝐵𝐾𝐶∽△𝐻𝐷𝐶BKCHDC (g.g) nên 𝐶𝐵𝐶𝐻=𝐶𝐾𝐶𝐷CHCB=CDCK

Suy ra 𝐶𝐵𝐶𝐾=𝐶𝐻𝐶𝐷CKCB=CDCH nên △𝐵𝐻𝐶∽△𝐾𝐷𝐶BHCKDC (c.g.c)

Khi đó 𝐻𝐵𝐶^=𝐷𝐾𝐶^HBC=DKC (hai góc tương ứng)

Chứng minh tương tự 𝐻𝐴𝐶^=𝐼𝐾𝐶^HAC=IKC

Mà 𝐻𝐴𝐶^=𝐻𝐵𝐶^HAC=HBC (cùng phụ 𝐴𝐶𝐵^ACB )

Suy ra  𝐷𝐾𝐶^=𝐼𝐾𝐶^ DKC=IKC.

Vậy 𝐾𝐶KC là tia phân giác của 𝐼𝐾𝐷^IKD.

12 tháng 4 2024

 Giải

Theo bài ra ta có sơ đồ

Theo sơ đồ ta có:

Chiều dài hình chữ nhật là:

(80 + 30):2 = 55(m)

Chiều rộng hình chữ nhật là:

55 - 30 = 25 (m)

Diện tích hình chữ nhật là:

55 x 25  = 1375 (m2)

Đáp số: 1375 m2

12 tháng 4 2024

loading... 

1
AH
Akai Haruma
Giáo viên
11 tháng 4 2024

Lời giải:
Ta thấy:

$x^4\geq 0; x^2\geq 0$ với mọi $x$
$\Rightarrow Q(x)=x^4+3x^2+1\geq 1>0$ với mọi $x$

$\RIghtarrow Q(x)$ không có nghiệm với mọi $x$

loading... 

1
AH
Akai Haruma
Giáo viên
11 tháng 4 2024

Lời giải:
a. Vì $P(x)$ có nghiệm $x=-1$ nên:

$P(-1)=0$

$\Leftrightarrow m(-1)^2+2m(-1)-3=0$

$\Leftrightarrow m-2m-3=0$

$\Leftrightarrow -m-3=0\Leftrightarrow m=-3$

b.

Có:

$P(-1)=a(-1)^2+b(-1)+c=a-b+c$

$P(-2)=a(-2)^2+b(-2)+c=4a-2b+c$

$\Rightarrow P(-1)+P(-2)=5a-3b+2c=0$

$\Rightarrow P(-1)=-P(-2)$
$\Rightarrow P(-1)P(-2)=-P(-2)P(-2)=-P^2(-2)\leq 0$ (đpcm)

12 tháng 4 2024

2/5 . (1/2 - 1/2 x) - 3/5 . (1/3 x - 10/3) = -1/4

1/5 - 1/5 x - 1/5x + 2 = -1/4

-2/5 x = -1/4 - 1/5 - 2

-2/5 x = -49/20

x = -49/20 : (-2/5)

x = 49/8

11 tháng 4 2024

giúp mik vs ạ

12 tháng 4 2024

Mình gửi lời giải qua ảnh này nhaa.

AM=MC

M nằm giữa A và C

Do đó:M là trung điểm của AC

=>\(S_{ABM}=S_{MBC}=\dfrac{1}{2}\times S_{ABC}=120\left(cm^2\right)\)

Vì BN=1/3 BC

nên \(S_{MNB}=\dfrac{1}{3}\times S_{BMC}=40\left(cm^2\right)\)

PB=PM

=>P là trung điểm của BM

=>\(S_{BPN}=\dfrac{1}{2}\times S_{MNB}=20\left(cm^2\right)\)

12 tháng 4 2024

    Đây là toán nâng cao chuyên đề tổng dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay, Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                         Giải:

Tổng của tô thứ hai và ô thứ ba là:

              39247 - 8 237 = 31010

 Số ở ô thứ tư là: 39247 - 31010 = 8237

Số ở ô thứ ba là: 39247 - 8237 - 22472 =  8538

Số ở ô thứ hai là: 39247 - 8538 - 8237 = 22472

Số ở ô thứ sáu là: 8538

Số ở ô thứ bảy là:  8237

Số ở ô thứ tám là : 22472

 

 

11 tháng 4 2024

Trong hình học Euclid, một tam giác thường được xác định bởi ba cạnh và ba góc. Để một tam giác tồn tại, ta cần biết điều kiện cho ba cạnh và ba góc. Trong trường hợp bạn đề cập, nếu ta có một cạnh là góc vuông và một góc nhọn không kề cạnh với góc vuông đó, thì sẽ xảy ra mâu thuẫn.

Vì trong một tam giác, tổng các góc bằng 180 độ, và trong một tam giác vuông, một góc là 90 độ. Nếu một góc khác không kề với góc vuông, nó sẽ phải nằm ở phần còn lại của tam giác, tức là từ 180 độ trừ đi 90 độ, tức là 90 độ. Nhưng điều này không thể xảy ra vì trong tam giác, không thể có góc nào lớn hơn 90 độ.

Vậy nên, một tam giác với một cạnh là góc vuông và một góc nhọn không kề cạnh với nó không thể tồn tại trong hình học Euclid.