Tính S= 1/22+1/23+...+1/22005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)
\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)

Giải toán bằng phương pháp cấu tạo số em nhé.
Số có hai chữ có dạng: \(\overline{ab}\) (10 ≤ \(\overline{ab}\) ≤ 99)
Theo bài ra ta có: a + b + a \(\times\) b = \(\overline{ab}\)
a + b + a \(\times\) b = a \(\times\) 10 + b
a + a \(\times\) b = a \(\times\) 10
a \(\times\)10 - a = a \(\times\) b
9a = a \(\times\) b
b = 9a : a
b = 9; 0< a ≤ 9
Vậy các số tự nhiên có hai chữ số thỏa mãn đề bài lần lượt là:
19; 29; 39; 49; 59; 69; 79; 89; 99

Gọi tổng của phép tính trên là A
\(A=15+2^4+2^5+2^6+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow A=2^{2023}-1\)

M = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\)+ \(\dfrac{5}{6.8}\)+ ...+ \(\dfrac{5}{96.98}\)+ \(\dfrac{5}{98.100}\)
M = \(\dfrac{5}{2}\).( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+ \(\dfrac{2}{96.98}\)+ \(\dfrac{2}{98.100}\))
M = \(\dfrac{5}{2}\).( \(\dfrac{1}{2}-\dfrac{1}{4}\)+ \(\dfrac{1}{4}-\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{8}\)+...+ \(\dfrac{1}{96}\)-\(\dfrac{1}{98}\)+ \(\dfrac{1}{98}\)-\(\dfrac{1}{100}\))
M = \(\dfrac{5}{2}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
M = \(\dfrac{49}{40}\)
\(x\) \(\times\) M - 1 = \(\dfrac{20}{29}\)
\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{20}{29}\) + 1
\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{49}{29}\)
\(x\) = \(\dfrac{49}{29}\) : \(\dfrac{49}{40}\)
\(x\) = \(\dfrac{40}{29}\)

Gọi số cần tìm có dạng là : abc
Khi đó :
Số mới khi xóa chữ số hàng trăm của số đó là : bc
Nếu xóa chữ số hàng trăm của số đó đi thì được một số mới . Lấy số mới đã cho chia cho số mới được thương là 3 và số dư là 8.
Nên ta có 1 bài toán tìm số dựa trên cơ sở tìm x sau :
abc - 8 = 3bc
100a+10b+c-8 = 30b+c
100a+10b+c-30b-c = 8
100a-20b = 8
20(5a-b)=8
5a-b=2/5
hình như sai thì phải em ạ .
Nếu như xóa chữ số hàng trăm của số đó đi thì được một số mới . Lấy số đã cho chia cho số mới ta được thương là 3 và dư 8
Nếu như xóa chữ số hàng trăm đi thì nghĩa rằng là : số đó đã bị giảm đi 100 đơn vị . Mà lại chia cho số mới được thương là 3 và dư 8 là vô lí em ạ.

`3/2+3/6+3/12+...+3/(99*100)`
`=3(1/(1*2)+1/(2*3)+1/(3*4)+...+1/(99*100))`
`=3(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)`
`=3(1/1-1/100)`
`=3(100/100-1/100)`
`=3*99/100`
`=297/100`
Lời giải:
$M=3(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{99.100})$
$=3(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100})$
$=3(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100})$
$=3(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100})$
$=3(1-\frac{1}{100})=3.\frac{99}{100}=\frac{297}{100}$

a)Sau số giờ 2 xe gặp nhau là:
9-7=2 (giờ)
Tổng vận tốc 2 xe là:
40+50=90(km/giờ)
Quãng đường ab là:
90x2=180(km)
b)Ô tô đến b hết số giờ là:
180:50=3,6(giờ)
Lúc đó xe máy đã đi được số km là:
40x3,6=144(km)
Xe máy còn cách a số km là:
180-144=36(km)
ĐS:a)180 km
b)36 km
\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)
\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)
\(S=2-\dfrac{1}{2^{2006}}\)