K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

\(ĐKXĐ:x\ge1,y\ge2\)

Ta có : \(C=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)

\(=\frac{\sqrt{1.\left(x-1\right)}}{x}+\frac{\sqrt{2.\left(y-2\right)}}{y\sqrt{2}}\)

Áp dụng BĐT Cô - si ta có :

\(\sqrt{1.\left(x-1\right)}\le\frac{1+x-1}{2}=\frac{x}{2}\Rightarrow\frac{\sqrt{1.\left(x-1\right)}}{x}\le\frac{1}{2}\)

\(\sqrt{2.\left(y-2\right)}\le\frac{2+y-2}{2}=\frac{y}{2}\Rightarrow\frac{\sqrt{2\left(y-2\right)}}{y}\le\frac{1}{2\sqrt{2}}\)

\(\)Do đó \(C\le\frac{2+\sqrt{2}}{4}\)

Dấu "=" xảy ra khi x = 2, y = 4

3 tháng 10 2020

Ta có : \(x^2+y^2\le x+y\)

\(\Rightarrow x+y-x^2-y^2\ge0\) (*)

Xét tổng : \(\left(x+y-x^2-y^2\right)+\left(x+y-2\right)\)

\(=-x^2+2x-1-y^2+2y-1\)

\(=-\left(x-1\right)^2-\left(y-1\right)^2\le0\) . Kết hợp với (*)

\(\Rightarrow x+y-2\le0\Rightarrow x+y\le2\)

3 tháng 10 2020

Mình ra kết quả là 7

Có dúng không vậy ? Giúp mình với

3 tháng 10 2020

sai rồi bạn ơi

3 tháng 10 2020

Với y nguyên thì \(2y^2-1\ne0\), Từ phương trình đề cho suy ra 

\(x=\frac{y^4}{2y^2-1}\). Để x nguyên thì :

\(y^4⋮2y^2-1\)

\(\Leftrightarrow8y^4⋮2y^2-1\)

\(\Leftrightarrow2.\left(4y^4-1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2\left(2y^2-1\right)\left(2y^2+1\right)+2⋮2y^2-1\)

\(\Leftrightarrow2y^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)

\(\Leftrightarrow2y^2\in\left\{0,2,-1,3\right\}\)

\(\Leftrightarrow y\in\left\{0,1,-1\right\}\) ( Do y nguyên )

Với \(y=0\Rightarrow x=0\)

Với \(y=1\Rightarrow x=1\)

Với \(y=-1\Rightarrow x=1\)

3 tháng 10 2020

mình cần gấp, ai giúp với

3 tháng 10 2020

\(A^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}.\)

\(A^2=8+2\sqrt{-x^2+2x+15}=8+2\sqrt{-\left(x^2-2x+1\right)+16}\)

\(A^2=8+2\sqrt{-\left(x-1\right)^2+16}\)

\(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+16\le16\)

\(\Rightarrow\sqrt{-\left(x-1\right)^2+16}\le\sqrt{16}=4\Rightarrow2\sqrt{-\left(x-1\right)^2+16}\le8\)

\(\Rightarrow A^2=8+2\sqrt{-\left(x-1\right)+16}\le16\Rightarrow A\le4\)