Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDKE và ΔDHF có
DK=DH
\(\widehat{KDE}\) chung
DE=DF
Do đó: ΔDKE=ΔDHF
=>KE=HF
b: Ta có: ΔDKE=ΔDHF
=>\(\widehat{DHF}=\widehat{DKE};\widehat{DEK}=\widehat{DFH}\)
Ta có: \(\widehat{DHF}+\widehat{EHF}=180^0\)(hai góc kề bù)
\(\widehat{DKE}+\widehat{FKE}=180^0\)(hai góc kề bù)
mà \(\widehat{DHF}=\widehat{DKE}\)
nên \(\widehat{EHF}=\widehat{FKE}\)
Ta có: DH+HE=DE
DK+KF=DF
mà DH=DK và DE=DF
nên HE=KF
Xét ΔOHE và ΔOKF có
\(\widehat{OHE}=\widehat{OKF}\)
HE=KF
\(\widehat{OEH}=\widehat{OFK}\)
Do đó: ΔOHE=ΔOKF
c: Ta có: ΔOHE=ΔOKF
=>OE=OF
=>O nằm trên đường trung trực của EF(1)
Ta có: DE=DF
=>D nằm trên đường trung trực của EF(2)
Từ (1),(2) suy ra DO là đường trung trực của EF
=>DO\(\perp\)EF
Độ dài quãng đường là:
\(84:\left(\dfrac{1}{4}+\dfrac{1}{3}\right)=84:\dfrac{7}{12}=144\left(km\right)\)
vận tốc lúc về là 144:3=48(km/h)
Giải
Cứ một giờ người đó đi được: 1 : 4 = \(\dfrac{1}{4}\) (Quãng đường AB)
Cứ một giờ người đó về được: 1 : 3 = \(\dfrac{1}{3}\) (Quãng đường AB)
Cứ một giờ cả đi và về người đó đi được:
\(\dfrac{1}{4}\) + \(\dfrac{1}{3}\) = \(\dfrac{7}{12}\) (Quãng đường AB)
Quãng đường AB dài là: 84 : \(\dfrac{7}{12}\) = 144 (km)
Vận tốc người đó đi từ B về A là: 144 : 3 = 48 (km/h)
Đáp số: Quãng đường AB dài là 144 km
Vận tốc người đó đi từ B về A là: 48 km/h
Vận tốc lúc đi là 35-3=32(km/h)
Thời gian đi là 120:32=3,75(giờ)=3h45p
Cano đến B lúc:
7h25p+3h45p=11h10p
\(\dfrac{x^5+5x^3-3x^4-2x^2+3x-6}{x^2-3x+5}\)
\(=\dfrac{x^5-3x^4+5x^3-2x^2+6x-10-3x+4}{x^2-3x+5}\)
\(=\dfrac{x^3\left(x^2-3x+5\right)-2\left(x^2-3x+5\right)-3x+4}{x^2-3x+5}\)
\(=x^3-2+\dfrac{-3x+4}{x^2-3x+5}\)
Hiệu vận tốc hai xe là
60:3=20(km/h)
Hiệu số phần bằng nhau là 5-3=2(phần)
Vận tốc xe máy là 20:2x3=30(km/h)
Vận tốc ô tô là 30+20=50(km/h)
\(x-\dfrac{4}{5}=\dfrac{6}{20}+\dfrac{-7}{3}\)
=>\(x-\dfrac{4}{5}=\dfrac{3}{10}-\dfrac{7}{3}=\dfrac{9-70}{30}=\dfrac{-61}{30}\)
=>\(x=-\dfrac{61}{30}+\dfrac{4}{5}=\dfrac{-61+24}{30}=\dfrac{-37}{30}\)
\(x\) - \(\dfrac{4}{5}\) = \(\dfrac{6}{20}\) + \(\dfrac{-7}{3}\)
\(x\) - \(\dfrac{4}{5}\) = - \(\dfrac{61}{30}\)
\(x\) = - \(\dfrac{61}{30}\) + \(\dfrac{4}{5}\)
\(x\) = - \(\dfrac{37}{30}\)
Vậy \(x\) = - \(\dfrac{37}{30}\)
a: -526,8<0
0<0,65
Do đó: -526,8<0,65
b: 6,45>0
0>-3,273
Do đó 6,45>-3,273
c: 7,78<9,56
=>-7,78>-9,56
d: 0,789>0,356
=>-0,789<-0,356
a: Xét ΔADB vuông tại D và ΔADE vuông tại D có
AD chung
DB=DE
Do đó: ΔADB=ΔADE
=>AB=AE
=>ΔABE cân tại A
b: Gọi H là giao điểm của CK và AD
Xét ΔAHC có
CD,AK là các đường cao
CD cắt AK tại E
Do đó: E là trực tâm của ΔAHC
=>HE\(\perp\)AC
mà EF\(\perp\)AC
nên H,E,F thẳng hàng
=>AD,EF,CK đồng quy