Cho \(x^2+2y\)là số chính phương(x,y e N). C/m \(x^2+y\)là tổng 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này
Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)
\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)
\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)
\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)
Tương tự ta biến đổi với các phân thức còn lại:
\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)
Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)
\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Vậy Min(P) = 1 khi a = b = c = 1
a) Ta có: \(BH+HC=BC\)
\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)
\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)
\(\Leftrightarrow AH\cdot1,9=10\)
\(\Rightarrow AH=5,3\left(cm\right)\)
\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)
b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)
P/s: Các kết quả chỉ tương đối
Bài 1:
\(\frac{x-9}{\sqrt{x}+3}+\frac{2\sqrt{x}-6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\sqrt{x}-3+2=\sqrt{x}-1\)
Bài 2:
a) Không rõ đề
b) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\left|x-3\right|=\sqrt{3}+1\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{3}+1\\x-3=-\sqrt{3}-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\)
Ta có: \(AC=BC\cdot\sin B=10\cdot\frac{3}{4}=7,5\left(cm\right)\)
\(\Rightarrow AB=\sqrt{BC^2-CA^2}=\sqrt{100-\frac{225}{4}}=\frac{5\sqrt{7}}{2}\left(cm\right)\)
Từ đó ta tính được:
\(\widehat{B}=49^0\) ; \(\sin C=\frac{AB}{BC}=\frac{\sqrt{7}}{4}\) \(\Rightarrow\widehat{C}=41^0\)
Vậy \(\hept{\begin{cases}AB=\frac{5\sqrt{7}}{2}\left(cm\right)\\AC=7,5\left(cm\right)\end{cases}}\) và \(\hept{\begin{cases}\widehat{B}=49^0\\\widehat{C}=41^0\end{cases}}\) (số đo góc chỉ xấp xỉ)
cho tam giác ABC, góc A =90 độ, AB=12cm
CosB=\(\frac{3}{5}\). Tính AC, BC, góc B, góc C
Đặt \(a=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow a^2=8+2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}=8+6=14\Rightarrow a=\sqrt{14}\)(Dễ thấy a > 0)
Ta đặt \(x^2+2y=k^2\Leftrightarrow2y=k^2-x^2=\left(k-x\right)\left(k+x\right)\) \(\left(k\inℕ\right)\)
Vì k - x và k + x cùng tính chẵn lẻ vả lại 2y chẵn
=> k - x và k + x cùng chẵn => k - x và k + x cùng chia hết cho 2
Mà \(x^2+2y=k^2\Leftrightarrow\hept{\begin{cases}x^2=k^2-2y\\y=\frac{k^2-x^2}{2}\end{cases}}\)
Thay vào ta được: \(x^2+y=k^2-2y+y=k^2+y\)
\(=k^2+\frac{k^2-x^2}{2}=\frac{k^2+x^2}{2}\)
\(=\frac{2k^2+2x^2}{4}=\frac{\left(k^2+2kx+x^2\right)+\left(k^2-2kx+x^2\right)}{4}\)
\(=\frac{\left(k+x\right)^2+\left(k-x\right)^2}{4}=\left(\frac{k+x}{2}\right)^2+\left(\frac{k-x}{2}\right)^2\) là tổng 2 SCP
=> đpcm