K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2024

               Giải:

Diện tích mảnh đất hình vuông là: 2\(x\) x 2\(x\) = 4\(x^2\) (m2)

Diện tích mảnh đất hình chữ nhật là: 4\(x^2\) (m2)

Phân thức biểu thị chiều dài của mảnh đất hình chữ nhật là:

P(\(x\)) = \(\dfrac{4x^2}{x-2}\) (m)

 

 

 

 

Câu 14:

b: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{1}{2}\right\}\)

\(A=\left(\dfrac{1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{x^2-1}\right):\dfrac{1-2x}{x^2-1}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{2}{x+1}+\dfrac{5-x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)

\(=\dfrac{x+1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)

\(=\dfrac{2x+4}{-2x+1}\)

21 tháng 3 2024

🆘

21 tháng 3 2024

Giúp với ạ

21 tháng 3 2024

Giúp với ạaaaaaa

21 tháng 3 2024

P = \(\dfrac{4}{x-1}\) (\(x\ne\) 1)

Với \(x\) = 3 thay vào P  =  \(\dfrac{4}{x-1}\)

Ta có: P = \(\dfrac{4}{3-1}\) 

         P = \(\dfrac{4}{2}\) 

        P = 2

Đặt \(B=\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}\)

ĐKXĐ: \(b\ne\pm3a\)

\(3a^3-6a^2b+ab^2-2b^3=0\)

=>\(3a^2\left(a-2b\right)+b^2\left(a-2b\right)=0\)

=>\(\left(a-2b\right)\left(3a^2+b^2\right)=0\)

=>\(\left\{{}\begin{matrix}a=2b\left(nhận\right)\\a=b=0\left(loại\right)\end{matrix}\right.\)

Thay a=2b vào B, ta được:

\(B=\dfrac{2\cdot2b-b}{3\cdot2b-b}+\dfrac{5b-2b}{3\cdot2b+b}=\dfrac{4-1}{6-1}+\dfrac{5-2}{6+1}\)

\(=\dfrac{3}{5}+\dfrac{3}{7}=\dfrac{3\cdot7+3\cdot5}{35}=\dfrac{36}{35}\)

ΔBAC vuông cân tại A nên AB=AC=5cm

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{5^2+5^2}=5\sqrt{2}\left(cm\right)\)

20 tháng 3 2024

ΔBAC vuông cân tại A nên AB=AC=5cm

BC là cạnh huyền
Áp dụng định lý Pytago ta có :
BC2= AB2+ AC2

BC2 = 25+25=50
BC = 5 \(\sqrt{ }\)
2(cm)

a: Số tiền tiết kiệm được trong tháng 3 là x+y(đồng)

Số tiền tiết kiệm được trong tháng 4 là y+x+y=x+2y(đồng)

Số tiền tiết kiệm được trong tháng 5 là:

x+y+x+2y=2x+3y(đồng)

b: Số tiền tiết kiệm được trong tháng 6 là:

x+2y+2x+3y=3x+5y(đồng)

Số tiền tiết kiệm trong tháng 2 nhiều hơn trong tháng giêng là 20000 đồng nên y=x+20000

=>Số tiền tiết kiệm được trong tháng 6 là:

3x+5(x+20000)=8x+100000(đồng)

Theo đề, ta có:

8x+100000=340000

=>8x=240000

=>x=30000

=>y=30000+20000=50000(đồng)

Số tiền của đôi giày là:

x+y+x+y+x+2y+2x+3y+3x+5y

=8x+12y

\(=8\cdot30000+12\cdot50000=840000\left(đồng\right)\)

20 tháng 3 2024

@Nguyễn Lê Phước Thịnh: làm bạn sao hay vậy?

 

AH
Akai Haruma
Giáo viên
20 tháng 3 2024

Lời giải:

 

$A=\frac{8x-2}{x^2+3}$

$\Rightarrow A(x^2+3)=8x-2$

$\Leftrightarrow Ax^2-8x+(3A+2)=0(*)$

Xét $A\neq 0$. Vì $A$ tồn tại nên PT $(*)$ tồn tại, nghĩa là $(*)$ có nghiệm

$\Leftrightarrow \Delta'=16-A(3A+2)\geq 0$

$\Leftrightarrow 3A^2+2A-16\leq 0$

$\Leftrightarrow (A-2)(3A+8)\leq 0$

$\Leftrightarrow \frac{-8}{3}\leq A\leq 2$

Vậy $A_{\max}=2$

NV
20 tháng 3 2024

Do M là trung điểm AF \(\Rightarrow AM=\dfrac{1}{2}AF=\dfrac{9}{2}\left(cm\right)\)

\(CE=AC-AE=10\left(cm\right)\)

Theo giả thiết, AF song song BC nên AM song song CN, áp dụng định lý talet:

\(\dfrac{AM}{CN}=\dfrac{AE}{CE}\) \(\Rightarrow CN=\dfrac{AM.CE}{AE}=\dfrac{\dfrac{9}{2}.10}{5}=9\left(cm\right)\)

Mà \(BC=18\left(cm\right)\Rightarrow CN=\dfrac{1}{2}BC\)

\(\Rightarrow N\) là trung điểm của BC

NV
20 tháng 3 2024

loading...

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16=4^2\)

=>AC=4(cm)

Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}\cdot4=2\left(cm\right)\)

b: Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

Hình thang AMNC có \(\widehat{MAC}=90^0\)

nên AMNC là hình thang vuông

c: Ta có: ΔABC vuông tại A

mà AN là đường trung tuyến

nên BC=2AN

Xét ΔBAC có BD là phân giác

nên \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\)

=>\(\dfrac{DA}{DC}=\dfrac{2\cdot AM}{2\cdot AN}=\dfrac{AM}{AN}\)