a)Vẽ trên cùng mặt phẳng tọa độ Oxy đồ thị của các hàm số y=-2x+5 (d1) và y=x+2 (d2).
b)Tìm tọa độ giao điểm M của 2 đường thẳng (d1)và (d2)
c)Tìm góc \(\alpha\)tạo bởi đường thẳng (d2)và trục hoành.
Please!! giúp mình với mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4
a) \(\frac{2\sqrt{2}}{\sqrt{2}}=2\)
b) \(\frac{\sqrt{2}+\sqrt{3}}{2+\sqrt{6}}=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{6}-2\right)}{\left(2+\sqrt{6}\right)\left(\sqrt{6}-2\right)}\)
\(=\frac{\sqrt{12}-2\sqrt{2}+\sqrt{18}-2\sqrt{3}}{\left(\sqrt{6}\right)^2-2^2}\)
\(=\frac{2\sqrt{3}-2\sqrt{2}+3\sqrt{2}-2\sqrt{3}}{6-4}\)
\(=\frac{\sqrt{2}}{2}\)
c) \(\frac{3+\sqrt{3}}{1+\sqrt{3}}=\frac{\left(\sqrt{3}+1\right)\sqrt{3}}{1+\sqrt{3}}=\sqrt{3}\)
d) \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
e) \(\sqrt{8-2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
g) \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{\left(\sqrt{5}-1\right)^2}=1+\sqrt{5}-1=\sqrt{5}\)
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne4\\x\ne9\end{cases}}\)
\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
\(=\left[\frac{-\left(\sqrt{x}-3\right)}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left[1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left[\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(1-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left[\frac{-x+9+x-4+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{\sqrt{x}+3-3}{\sqrt{x}+3}\right)\)
\(=\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}+3}{\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)
Vì \(x\inℤ\)\(\Rightarrow\)Để P nguyên thì \(\frac{2}{\sqrt{x}}\inℤ\)
\(\Rightarrow2⋮\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vì \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}\in\left\{1;2\right\}\)
\(\Rightarrow x\in\left\{1;4\right\}\)
So sánh với ĐKXĐ ta thấy \(x=1\)thỏa mãn
\(\Rightarrow P=\frac{\sqrt{1}+2}{\sqrt{1}}=\frac{1+2}{1}=3\)
Vậy \(x=1\)khi đó \(P=3\)
\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\div\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a) ĐK : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\left(\frac{\left(3-\sqrt{x}\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}+3}{\sqrt{x}+3}-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{9-x+x-4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+3}\right)\)
\(=\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\times\frac{\sqrt{x}+3}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có : \(\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)
Để P nguyên => \(\frac{2}{\sqrt{x}}\)nguyên
=> \(2⋮\sqrt{x}\)
=> \(\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(\sqrt{x}\in\left\{1;2\right\}\)( vì x ≥ 0 )
=> \(x\in\left\{1;4\right\}\Rightarrow x=1\)( vì x ≠ 4 )
Vậy với x = 1 thì P có giá trị nguyên
a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)
b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)
c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)
d, \(x-y-\sqrt{x}-\sqrt{y}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
\(\frac{\sqrt{x-2}}{2x+3}=2\)
ĐK : x ≥ 2
Bình phương hai vế
pt <=> \(\frac{x-2}{4x^2+12x+9}=4\)
<=> x - 2 = 4( 4x2 + 12x + 9 )
<=> 16x2 + 48x + 36 - x + 2 = 0
<=> 16x2 + 47x + 38 = 0
Ta có : 16x2 + 47x + 38 = 16( x2 + 47/16 + 2209/1024 ) + 223/64 = 16( x + 47/32 )2 + 223/64 ≥ 223/64 > 0 ∀ x
=> Phương trình vô nghiệm
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)