Tính canh đáy BC của tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành hai phần: AH=8cm; HC=3cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
TA XÉT 2 TAM GIÁC BDC VÀ TAM GIÁC CEB CÓ
BC LÀ CẠNH HUYỀN CHUNG
GÓC E=GÓC D
EC=BD
=>TAM GIÁC BDC = TAM GIÁC CEB (CH GN)
B,XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ
GÓC E= GÓC D
A CHUNG
GÓC B=GÓC C
=>TAM GIÁC ADB = TAM GIÁC AEC (GCG)
=>AE=AD=>TAM GIÁC ADE CÂN TẠI A
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Từ 1 đến 9 có 9 số có 1 chữ số gồm 9.1=9(chữ số)
Từ 10 đến 99 có (99-10):1+1=90 số có 2 chữ số gồm 90.2=180(chữ số)
Từ 100 đến 312 có (312-100):1+1=213 số có 3 chữ số gồm 213.3=639(chữ số)
Vậy để đánh số trang của 1 cuốn sách dày 312 trang cần:9+180+639=828(chữ số)
b)Số trang có 1 chữ số :(9-1):1+1=9(trang) Số trang có 2 chữ số:(99-10):1+1=90(trang)
![](https://rs.olm.vn/images/avt/0.png?1311)
/x-2016/+/2007-x/\(\ge\)/x-2016+2007-x/
\(\ge\)/-2016+2007/
\(\ge\)/-9/=9
=> /x-2016/+/2007-x/ có giá trị nhỏ nhất là 9
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(xy.yz.xz=\frac{3}{5}\cdot\frac{4}{5}\cdot\frac{3}{4}\)
\(\Leftrightarrow\left(xyz\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow xyz=\frac{3}{5}\)
\(\Rightarrow z=xyz:xy=\frac{3}{5}:\frac{3}{5}=1\)
\(\Rightarrow y=\frac{4}{5}\)
\(\Rightarrow x=\frac{3}{5}:\frac{4}{5}=\frac{3}{5}\cdot\frac{5}{4}=\frac{3}{4}\)
Vậy \(x=\frac{3}{4};y=\frac{4}{5};z=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : xy.yz.xz = 2.3.54
<=> ( xyz )2 = 324
=> ( xyz )2 = 182 = ( - 18 )2
TH1 : xyz = 18
=> z = xyz : xy = 18 : 2 = 9
=> 9y = 3 => y = 1/3
=> 1/3x = 2 => x = 6
TH2 : xyz = - 18
=> z = xyz : xy = - 18 : 2 = - 9
=> - 9y = 3 => y = - 1/3
=> - 1/3x = 2 => x = - 6
Vậy ( x;y;z ) = { ( 9;1/3;6 ); ( - 9;- 1/3 ; - 6 ) }
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H 8cm 3cm
Ta có AC = AH + HC = 8 + 3 = 11 (cm)
Mà AB = AC ( tam giác ABC cân tại A ) => AB = 11 (cm)
Tam giác ABH vuông tại H => Áp dụng định lý pytago ta có :
AB2 = AH2 + BH2 => BH2 = AB2 - AH2 = 112 - 82 = 57
=> BH = \(\sqrt{57}\)
Tam giác BHC vuông tại H => Áp dụng định lý pytago ta có :
BC2 = BH2 + HC2 = 57 + 32 = 66
=> BC = \(\sqrt{66}\)