Chứng minh phân số : n +2011/n+2012 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}\)
\(=\frac{1}{3}\left[\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+...+\frac{3}{77\cdot80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{23}+...+\frac{1}{77}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{1}{20}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\left[\frac{4}{80}-\frac{1}{80}\right]\)
\(=\frac{1}{3}\cdot\frac{3}{80}=\frac{1}{1}\cdot\frac{1}{80}=\frac{1}{80}\)
Mà \(\frac{1}{80}< \frac{1}{9}\)nên \(\frac{1}{20\cdot23}+\frac{1}{23\cdot26}+...+\frac{1}{77\cdot80}< \frac{1}{9}\)
Vậy : ...
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
\(\frac{1}{x}=\frac{y}{2-1}\Rightarrow\frac{1}{x}=\frac{y}{1}\)
\(\Rightarrow1\cdot1=xy\Rightarrow xy=1\)
Vì x, y là các số nguyên dương và xy = 1
\(\Rightarrow x=y=1\)
\(\frac{1}{x}=\frac{y}{2}-1\)
\(\Leftrightarrow\frac{1}{x}=\frac{y}{2}-\frac{2}{2}\)
\(\Leftrightarrow\frac{1}{x}=\frac{y-2}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}1=y-2\\x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=3\\x=2\end{cases}}\)
Ta có A=17^18+1/17^19+1 < 17^18+1+16/17^19+1+16 = 17^18+17/17^19+17 = 17(17^17+1/17^18+1)= B
Vậy A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\)
Ta có : \(17A=\frac{17(17^{18}+1)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{17}{17^{19}+1}\) \((1)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta lại có : \(17B=\frac{17(17^{17}+1)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{17}{17^{18}+1}\) \((2)\)
Từ 1 và 2 suy ra : \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
Nên \(17A< 17B\)
Hay \(A< B\)
Vậy : \(A< B\)
Giúp tớ với mai mình phải nộp bài rồi. Cảm ơn
Ex1: It's getting light. Shall I turn...on.....the light to save electricity?
A) off. B) on. C) up. D) in
Don't eat too much..salt... It's not good for you
A) vegetable B) fish. C) salt. D) wine
Ex2: Complete these sentences with the words given.
1) Who/ be/ strong/ person/ your family? Who is the strongest person in your family?
2) My/ future house/ be/ located/ the/ ocean. My future house will be located in the ocean.
3) We/ have/ visit/ Cambodia/ last year We had visited Cambodia last year.
4) Yesterday/ Nam/ go/ camping/ his classmates Yesterday, Nam went camping with his classmates.
Ex 1
A
C hoặc D
Ex 2
1 Who are string person in your family
2.My future home will be located on the ocean
3. We have visited Cambodia last year
4. Yesterday,Nam went camping with his classmates
Có thể có câu mk sai
Bn giúp mk sủa lại
Hok tốt ^^
============
Để chứng minh \(\frac{n+2011}{n+2012}\) là phân số tối giản => ( n+2011; n+2012 ) = 1
Gọi d là \(ƯCLN\left(n+2011;n+2012\right)\)
\(\Rightarrow\hept{\begin{cases}n+2011⋮d\\n+2012⋮d\end{cases}\Rightarrow\left(n+2012\right)-\left(n+2011\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{n+2011}{n+2012}\) là phân số tối giản.
gọi d là UCLN(n+2011,n+2012)
\(\Rightarrow\orbr{\begin{cases}n+2011⋮\\n+2012⋮\end{cases}}d\)
\(\Rightarrow\left(n+2012\right)-\left(n+2011\right)⋮d\)
\(\Rightarrow n+2012-n-2011⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯCLN\left(1\right)=\left\{\pm1\right\}\)
=> UCLN(N+2011,2012) = 1
=>\(\frac{2011}{2012}\)Là phân số tối giản
Chúc bạn học tốt !